Cooling and heating innovations: exploring the diverse applications of heat pumps

Authors

  • Karina Mussabekova Faculty of Mechanical Engineering, Energy and Information Technologies, Akhmet Baitursynuly Kostanay Regional University, 47 Baytursynov st., Kostanay, Kazakhstan https://orcid.org/0009-0005-6257-8574
  • Aliya Nurbayeva Faculty of Mechanical Engineering, Energy and Information Technologies, Akhmet Baitursynuly Kostanay Regional University, 47 Baytursynov st., Kostanay, Kazakhstan https://orcid.org/0009-0004-5433-1013

DOI:

https://doi.org/10.54355/tbusphys/2.2.2024.0014

Keywords:

heating, ventilation, air conditioning, temperature control, humidity regulation, energy efficiency

Abstract

Heat pumps are versatile and energy-efficient devices that play a crucial role in modern heating, cooling, and refrigeration applications. This abstract provides a concise overview of the diverse applications and benefits of heat pumps across residential, commercial, industrial, and transportation sectors. The abstract discusses the principles of heat pump operation, emphasizing their capability to transfer heat from one location to another using thermodynamic processes. The abstract highlights key applications such as residential heating, ventilation, and air conditioning systems, commercial refrigeration, hot water heating, process cooling, and renewable energy integration. The energy efficiency and environmental benefits of heat pumps are also emphasized, showcasing their potential to reduce carbon emissions and contribute to sustainable energy practices. By understanding the broad scope of heat pump applications outlined in this abstract, researchers, engineers, policymakers, and industry stakeholders can gain insights into the significance of heat pump technology in advancing energy efficiency and addressing climate change challenges.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Karina Mussabekova, Faculty of Mechanical Engineering, Energy and Information Technologies, Akhmet Baitursynuly Kostanay Regional University, 47 Baytursynov st., Kostanay, Kazakhstan

Master Student

Aliya Nurbayeva, Faculty of Mechanical Engineering, Energy and Information Technologies, Akhmet Baitursynuly Kostanay Regional University, 47 Baytursynov st., Kostanay, Kazakhstan

Master Student

References

Experimental investigation of a novel thermal energy storage unit in the heat pump system / M. Koşan, M. Aktaş // Journal of Cleaner Production. — 2021. — Vol. 311. — P.127607. https://doi.org/10.1016/j.jclepro.2021.127607 DOI: https://doi.org/10.1016/j.jclepro.2021.127607

Thermal performance evaluation of multi-tube cylindrical LHS system / B.G. Abreha, P. Mahanta, G. Trivedi // Applied Thermal Engineering. — 2020. — Vol. 179. — P. 115743 https://doi.org/10.1016/j.applthermaleng.2020.115743 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115743

Phase change storage solar heat pump hydronics based on cloud computing / W. WU // Thermal Science. — 2024. — Vol. 28, No. 2B. — P. 1423–1429. https://doi.org/10.2298/TSCI2402423W DOI: https://doi.org/10.2298/TSCI2402423W

Total energy heat pump / Y.H.V. Lun, S.L.D. Tung // Green Energy and Technology. — 2020. — P. 65–79. https://doi.org/10.1007/978-3-030-31387-6_5 DOI: https://doi.org/10.1007/978-3-030-31387-6_5

Performance comparison of single-stage/cascade heat pump for waste heat recovery of printing-dyeing industry / D. Gu, Y. Yang, Y. Wu, W. Yan, B. Hu, L. Shi, C. Shen, M. Chen, C. Zheng, Y. Cai, W. Li // Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023). — 2023. — Vol. 12788. — P. 3004469. https://doi.org/10.1117/12.3004469 DOI: https://doi.org/10.1117/12.3004469

Analysis of a solar-assisted heat pump system with hybrid energy storage for space heating / S. Zhang, S. Liu, J. Wang, Y. Li, Z. Yu // Applied Thermal Engineering. — 2023. — Vol. 231. — P. 120884. https://doi.org/10.1016/j.applthermaleng.2023.120884 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120884

Peltier effect: From linear to nonlinear / Z. Yang, C. Zhu, Y.-J. Ke, X. He, F. Luo, J. Wang, J.-F. Wang, Z.-G. Sun // Wuli Xuebao/Acta Physica Sinica. — 2021. — Vol. 70, No. 10. — P. 1826. https://doi.org/10.7498/aps.70.20201826 DOI: https://doi.org/10.7498/aps.70.20201826

Theoretical and Experimental Investigation about the Influence of Peltier Effect on the Temperature Loss and Performance Loss of Thermoelectric Generator / X. Li, J. Wang, Q. Meng, D. Yu // Energy Technology. — 2022. — Vol. 10, No. 4. — P. 895. https://doi.org/10.1002/ente.202100895 DOI: https://doi.org/10.1002/ente.202100895

Improvement of the Self-Heating Performance of an Advanced SiGe HBT Transistor through the Peltier Effect / A. Boulgheb, M. Lakhdara, S. Latreche // IEEE Transactions on Electron Devices. — 2021. — Vol. 68, No. 2. — P. 479–484. https://doi.org/10.1109/TED.2020.3044869 DOI: https://doi.org/10.1109/TED.2020.3044869

Portable Thermal Electricity Generator Using the Seebeck Effect of Peltier as an Alternative Energy / Habibullah, Hastuti, T. Muhammad, D.S. Putra, J. Sardi // 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, ICAMIMIA 2023 – Proceedings. — 2023. — Vol. 1. — P. 564–568. https://doi.org/10.1109/ICAMIMIA60881.2023.10427831 DOI: https://doi.org/10.1109/ICAMIMIA60881.2023.10427831

Thermoregulation of Smart Clothing based on Peltier Elements / M.F. Mitsik, M.V. Byrdina // 2020 IEEE East-West Design and Test Symposium, EWDTS 2020 - Proceedings. — 2020. — Vol. 4. — P. 164143. https://doi.org/10.1109/EWDTS50664.2020.9224805 DOI: https://doi.org/10.1109/EWDTS50664.2020.9224805

Peltier elements vs. heat sink in cooling of high power LEDs / N. Bǎdǎlan, P. Svasta // Proceedings of the International Spring Seminar on Electronics Technology. — 2015. — Vol. 2015 – September. — P. 124–128. https://doi.org/10.1109/ISSE.2015.7247975

Peltier elements vs. heat sink in cooling of high power LEDs / N. Bǎdǎlan, P. Svasta // Proceedings of the International Spring Seminar on Electronics Technology. — 2015. — Vol. 2015 – September. — P. 124–128. https://doi.org/10.1109/ISSE.2015.7247975 DOI: https://doi.org/10.1109/ISSE.2015.7247975

The central role of the Peltier coefficient in thermoelectric cooling / J. Garrido, A. Casanovas // Journal of Applied Physics. — 2014. — Vol. 115, No. 12. — P. 123517. https://doi.org/10.1063/1.4869776 DOI: https://doi.org/10.1063/1.4869776

Peltier modules in cooling systems for electronic components / K. Domke, P. Skrzypczak // Advanced Computational Methods and Experiments in Heat Transfer XI. — 2010. — Vol. 68. — P. 3–12. https://doi.org/10.2495/HT100011 DOI: https://doi.org/10.2495/HT100011

Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery / M. Balva, S. Legeai, L. Garoux, N. Leclerc, E. Meux // Environmental Technology (United Kingdom). — 2017. — Vol. 38, No. 7. — P. 791–797. https://doi.org/10.1080/09593330.2016.1211748 DOI: https://doi.org/10.1080/09593330.2016.1211748

Direct observation of the spin-dependent Peltier effect / J. Flipse, F.L. Bakker, A. Slachter, F.K. Dejene, B.J. Van Wees // Nature Nanotechnology. — 2012. — Vol. 7, No. 3. — P. 166–168. https://doi.org/10.1038/nnano.2012.2 DOI: https://doi.org/10.1038/nnano.2012.2

Downloads

Published

2024-05-03

How to Cite

Mussabekova, K., & Nurbayeva, A. (2024). Cooling and heating innovations: exploring the diverse applications of heat pumps. Technobius Physics, 2(2), 0014. https://doi.org/10.54355/tbusphys/2.2.2024.0014