Spectral characterization of elemental emissions, experimental insights and theoretical evaluation





spectral analysis, spectral lamps, optical spectrometer, diffraction grating, wavelength determination


This experimental study delves into the spectral analysis of five discrete spectral lamps, namely helium, sodium, mercury, cadmium and zinc, utilizing a suite of scientific instrumentation including an optical spectrometer with converging lenses and a diffraction grating. The primary objective is to determine the wavelengths corresponding to visible spectral lines emitted by these lamps. Calibration of the spectrometer with the helium lamp facilitated the derivation of the diffraction grating constant. Subsequent measurements of diffraction angles allowed for the computation of experimental wavelengths, which were then compared with theoretical values. Analysis revealed slight discrepancies between experimental and theoretical values, likely attributed to systematic errors such as extraneous light sources and parallax errors in angle measurements. Furthermore, examination of spectral line splitting demonstrated the removal of degeneracy within specified energy levels, resulting in the observation of distinct spectral components. Overall, this study underscores the significance of meticulous experimental techniques in the elucidation of fundamental physical phenomena and highlights the interplay between theory and observation in spectral analysis.


Download data is not yet available.


Metrics Loading ...

Author Biographies

Islam Amangeldinov, Faculty of Engineering and Information Technology, Almaty Technological University, 100 Tole bi st., Almaty, Kazakhstan

Master Student

Dmitri Korovaev, Research Assistant, Institute of Physics, Technical University of Berlin, 17 Straße des, Berlin, Germany

MSc, Research Assistant


Empirical Determination of the Bohr-Weisskopf Effect in Cesium and Improved Tests of Precision Atomic Theory in Searches for New Physics / G. Sanamyan, B.M. Roberts, J.S.M. Ginges // Physical Review Letters. — 2023. — Vol. 130, No. 5. — P. 053001. https://doi.org/10.1103/PhysRevLett.130.053001 DOI: https://doi.org/10.1103/PhysRevLett.130.053001

The theory of the Bohr-Weisskopf effect in the hyperfine structure / F.F. Karpeshin, M.B. Trzhaskovskaya // Nuclear Physics A. — 2015. — Vol. 941. — P. 66–77. https://doi.org/10.1016/j.nuclphysa.2015.06.001 DOI: https://doi.org/10.1016/j.nuclphysa.2015.06.001

Bohr-Weisskopf effect: Influence of the distributed nuclear magnetization on hfs / H.H. Stroke, H.T. Duong, J. Pinard // Hyperfine Interactions. — 2000. — Vol. 129, No. 1–4. — P. 319–335. https://doi.org/10.1023/A:1012630404421 DOI: https://doi.org/10.1023/A:1012630404421

Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect) / H.T. Duong, C. Ekström, M. Gustafsson, T.T. Inamura, P. Juncar, P. Lievens, I. Lindgren, S. Matsuki, T. Murayama, R. Neugart, T. Nilsson, T. Nomura, M. Pellarin, S. Penselin, J. Persson, J. Pinard, I. Ragnarsson, O. Redi, H.H. Stroke, J.L. Vialle // Nuclear Inst. and Methods in Physics Research, A. — 1993. — Vol. 325, No. 3. — P. 465–474. https://doi.org/10.1016/0168-9002(93)90392-U DOI: https://doi.org/10.1016/0168-9002(93)90392-U

Bohr-Weisskopf effect: From hydrogenlike-ion experiments to heavy-Atom calculations of the hyperfine structure / B.M. Roberts, P.G. Ranclaud, J.S.M. Ginges // Physical Review A. — 2022. — Vol. 105, No. 5. — P. 052802. https://doi.org/10.1103/PhysRevA.105.052802 DOI: https://doi.org/10.1103/PhysRevA.105.052802

Bohr-Weisskopf effect in the potassium isotopes / Y.A. Demidov, M.G. Kozlov, A.E. Barzakh, V.A. Yerokhin // Physical Review C. — 2023. — Vol. 107, No. 2. — P. 024307. https://doi.org/10.1103/PhysRevC.107.024307 DOI: https://doi.org/10.1103/PhysRevC.107.024307

Ground-state hyperfine splitting of high-[Formula Presented] hydrogenlike ions / V.M. Shabaev, M. Tomaselli, T. Kühl, A.N. Artemyev, V.A. Yerokhin // Physical Review A - Atomic, Molecular, and Optical Physics. — 1997. — Vol. 56, No. 1. — P. 252–255. https://doi.org/10.1103/PhysRevA.56.252 DOI: https://doi.org/10.1103/PhysRevA.56.252

Thallium hyperfine anomaly | M.G.H. Gustavsson. F. Christian, A.-M. Martensson-Pendrill // Hyperfine Interactions. — 2000. — Vol. 127, No. 1-4. — P. 347–352. https://doi.org/10.1023/A:1012693012231 DOI: https://doi.org/10.1023/A:1012693012231

Calculation of radiative corrections to hyperfine splitting in p3/2 states / J. Sapirstein, K.T. Cheng // Physical Review A - Atomic, Molecular, and Optical Physics. — 2008. — Vol. 78, No. 2. — P. 022515. https://doi.org/10.1103/PhysRevA.78.022515 DOI: https://doi.org/10.1103/PhysRevA.78.022515

The Dirac equation in the algebraic approximation: VIII. Comparison of finite basis set and finite element molecular Dirac-Hartree-Fock calculations for the H2, LiH, and BH ground states / A.I. Kuleff, Y.I. Delchev, P.Tz. Yotov, Tz. Mineva, J. Maruani // International Journal of Quantum Chemistry. — 2002. — Vol. 89, No. 4. — P. 227–236. https://doi.org/10.1002/qua.10294 DOI: https://doi.org/10.1002/qua.10294




How to Cite

Amangeldinov, I., & Korovaev, D. (2024). Spectral characterization of elemental emissions, experimental insights and theoretical evaluation. Technobius Physics, 2(2), 0012. https://doi.org/10.54355/tbusphys/2.2.2024.0012