Research of foam concrete quality by two-stage foam injection method in comparison with classical foam concrete
DOI:
https://doi.org/10.54355/tbus/4.1.2024.0052Keywords:
foam concrete , blowing agent, microsilica, post-alcohol bard, density, strength, thermal insulation properties, production technologyAbstract
The article presents a method of production of foam concrete, which involves two-stage injection of foam. The proposed method involves improving the pore structure of foam concrete, due to a more uniform distribution of pores throughout the volume of the material. Laboratory tests were carried out for two types of samples, represented by the proposed method of foam concrete production by two-stage foam injection with the use of modified additive in comparison with the classical foam concrete. The density of Type 1 samples varies from 410 to 793 kg/m3 (coefficient of variation from 5.12 to 7.31%), while the density of fiberboard samples lies within the range from 539 to 655 kg/m3 (coefficient of variation from 2.66 to 3.14%). The results of greater variation of densities by height in the Type 1 sample relative to the Type 2 sample indicate the influence of the technological process of foam concrete production on the quality of the pore structure of the material. The results of strength evaluation showed a large scatter of Type 1 samples in relation to Type 2 samples. The highest values of CM strengths are logically observed in the lower part of the sample and the lowest in the upper location: 44.04 and 32.33 kg/cm2 (coefficient of variation from 5.15 to 9.54%). For Type 2 samples, the same values are 55.18 and 44.44 kg/cm2, for the lower and upper locations, respectively (coefficient of variation from 2.79 to 5.35%). The results of thermal conductivity measurements of Type 1 samples range from 0.098 to 0.203 W/m0C (coefficient of variation from 4.59 to 11.88%), while the densities of Type 2 samples lie between 128 and 162 W/m0C (coefficient of variation from 3.38 to 3.55%).
Downloads
Metrics
References
L. Chica and A. Alzate, “Cellular concrete review: New trends for application in construction,” Constr Build Mater, vol. 200, pp. 637–647, Mar. 2019, doi: 10.1016/j.conbuildmat.2018.12.136. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.136
A. J. Hamad, “Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review,” International Journal of Materials Science and Engineering, vol. 2, no. 2, pp. 152–157, 2014, doi: 10.12720/ijmse.2.2.152-157. DOI: https://doi.org/10.12720/ijmse.2.2.152-157
N. Z. Muhammad, A. Keyvanfar, M. Z. Abd. Majid, A. Shafaghat, and J. Mirza, “Waterproof performance of concrete: A critical review on implemented approaches,” Constr Build Mater, vol. 101, pp. 80–90, Dec. 2015, doi: 10.1016/j.conbuildmat.2015.10.048. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.048
V. I. Kalashnikov, “Kak prevratit betony starogo pokoleniya v vysokoeffektivnye betony novogo pokoleniya,” Beton i zhelezobeton, vol. 1, no. 1, pp. 82–89, 2012.
W. Wypych, Handbook of foaming and blowing agents. Toronto: ChemTec Publishing, 2017.
X. Xi, S. Jiang, C. Yin, and Z. Wu, “Experimental investigation on cement-based foam developed to prevent spontaneous combustion of coal by plugging air leakage,” Fuel, vol. 301, p. 121091, Oct. 2021, doi: 10.1016/j.fuel.2021.121091. DOI: https://doi.org/10.1016/j.fuel.2021.121091
M. S. Zakurazhnov, O. V. Artamonova, and E. I. Shmitko, “Effektivnoe modificirovanie sistem tverdeniya cementnogo kamnya s ispolzovaniem aktivirovannogo mikrokremnezema ,” Izvestiya TulGU. Tehnicheskie nauki, vol. 12, no. 1, pp. 43–52, 2015.
D. V. Shirshaeva and A. S. Ustyugov, “Kompleksnaya dobavka dlya cementnogo vyazhushego,” in Izbrannye doklady 65-j yubilejnoj universitetskoj nauchno-tehnicheskoj konferencii studentov i molodyh uchenyh, Tomsk, Russia: TSUAB, 2019, pp. 878–879.
C. O’Connor, Chemical Blowing Agent Systems for Polymer Foam Manufacture. Manchester: The University of Manchester, 1999.
S. Bhattacharya, Development of macro/nanocellular foams in polymer nanocomposites. Melbourne: RMIT University, 2009.
J. Plank, E. Sakai, C. W. Miao, C. Yu, and J. X. Hong, “Chemical admixtures — Chemistry, applications and their impact on concrete microstructure and durability,” Cem Concr Res, vol. 78, pp. 81–99, Dec. 2015, doi: 10.1016/j.cemconres.2015.05.016.
R. Lukpanov, D. Dyussembinov, A. Altynbekova, and Z. Zhantlesova, “Research of foam concrete components in the regional production conditions of Nur-Sultan,” Technobius, vol. 2, no. 3, p. 0023, Sep. 2022, doi: 10.54355/tbus/2.3.2022.0023. DOI: https://doi.org/10.54355/tbus/2.3.2022.0023
R. Lukpanov, D. Dyussembinov, Z. Shakhmov, D. Bazarbayev, D. Tsygulyov, and S. Yenkebayev, “Influence of the technological foam concrete manufacturing process on its pore structure,” Magazine of Civil Engineering, vol. 115, no. 7, p. 11513, 2022, doi: 10.34910/MCE.115.13.
Y. Y. Sabitov, D. S. Dyussembinov, A. A. Zhumagulova, D. O. Bazarbayev, and R. E. Lukpanov, “Composite non-autoclaved aerated concrete based on an emulsion,” Magazine of Civil Engineering, vol. 106, no. 6, p. 10605, 2021, doi: 10.34910/MCE.106.5.
R. Lukpanov, D. Dyussembinov, Z. Zhantlessova, A. Altynbekova, and A. Smoljaninov, “Approximative approach to optimize concrete foaming concentration in two stage foaming,” Technobius, vol. 3, no. 3, p. 0041, Sep. 2023, doi: 10.54355/tbus/3.3.2023.0041. DOI: https://doi.org/10.54355/tbus/3.3.2023.0041
A. D. Altynbekova, R. E. Lukpanov, D. S. Dyussembinov, A. M. Askerbekova, and E. V. Tkach, “Effect of a complex modified additive on the setting time of the cement mixture,” Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, vol. 325, no. 2, pp. 29–38, Jun. 2023, doi: 10.31643/2023/6445.15. DOI: https://doi.org/10.31643/2023/6445.15
R. E. Lukpanov, D. S. Dyussembinov, A. D. Altynbekova, S. B. Yenkebayev, and T. Awwad, “Assessment of the physical and mechanical characteristics of sand for the production of foam concrete using the two-stage foam injection method,” Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, vol. 332, no. 1, pp. 5–18, Mar. 2025, doi: 10.31643/2025/6445.01. DOI: https://doi.org/10.31643/2025/6445.01
R. Lukpanov, D. Dyussembinov, A. Altynbekova, S. Yenkebayev, and T. Awwad, “Optimal concentration of post-alcohol bard and microsilica in cement-sand mixtures determination,” Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, vol. 330, no. 3, pp. 92–103, Sep. 2024, doi: 10.31643/2024/6445.33. DOI: https://doi.org/10.31643/2024/6445.33
A. Altynbekova, “Complex laboratory studies of modified additive influence on concrete physical and mechanical properties,” International Journal of GEOMATE, vol. 23, no. 100, pp. 26–33, Dec. 2022, doi: 10.21660/2022.100.3641. DOI: https://doi.org/10.21660/2022.100.3641
R. Lukpanov, D. Dyussembinov, A. Altynbekova, and Z. Zhantlesova, “Research on the effect of microsilica on the properties of the cement-sand mixture,” Technobius, vol. 2, no. 4, p. 0027, Dec. 2022, doi: 10.54355/tbus/2.4.2022.0027. DOI: https://doi.org/10.54355/tbus/2.4.2022.0027
R. Lukpanov, D. Dyussembinov, D. Tsygulyov, and S. Yenkebayev, “Complex modified additive for concrete based on industrial waste,” Magazine of Civil Engineering, vol. 115, no. 7, p. 11507, 2022, doi: 10.34910/MCE.115.7.
R. E. Lukpanov, D. S. Dyussembinov, S. B. Yenkebayev, A. S. Yenkebayeva, and E. V. Tkach, “Additive for improving the quality of foam concrete made on the basis of micro silica and quicklime,” Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, vol. 323, no. 4, pp. 30–37, Dec. 2022, doi: 10.31643/2022/6445.37. DOI: https://doi.org/10.31643/2022/6445.37
A. D. Altynbekova, R. E. Lukpanov, D. S. Dyussembinov, A. M. Askerbekova, and M. Gunasekaran, “Effect of a complex modified additive based on post-alcohol bard on the strength behavior of concrete,” Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, vol. 327, no. 4, pp. 5–14, Dec. 2023, doi: 10.31643/2023/6445.34. DOI: https://doi.org/10.31643/2023/6445.34
R. E. Lukpanov et al., “Homogeneous pore distribution in foam concrete by two-stage foaming,” Magazine of Civil Engineering, vol. 103, no. 3, p. 10313, 2021, doi: 10.34910/MCE.103.13. DOI: https://doi.org/10.54355/tbus/3.4.2023.0047
J. Feng, S. Liu, and Z. Wang, “Effects of ultrafine fly ash on the properties of high-strength concrete,” J Therm Anal Calorim, vol. 121, no. 3, pp. 1213–1223, Sep. 2015, doi: 10.1007/s10973-015-4567-3. DOI: https://doi.org/10.1007/s10973-015-4567-3
I. Havlikova, V. Bilek Jr., and L. Topolar, “Modified cement-based mortars: crack initiation and volume changes,” Materiali in tehnologije, vol. 49, no. 4, pp. 557–561, Aug. 2015, doi: 10.17222/mit.2014.179. DOI: https://doi.org/10.17222/mit.2014.179
S. Marceau, F. Lespinasse, J. Bellanger, C. Mallet, and F. Boinski, “Microstructure and mechanical properties of polymer-modified mortars,” European Journal of Environmental and Civil Engineering, vol. 16, no. 5, pp. 571–581, May 2012, doi: 10.1080/19648189.2012.675148. DOI: https://doi.org/10.1080/19648189.2012.675148
Q. Cao, W. Sun, L. Guo, and G. Zhang, “Polymer-modified concrete with improved flexural toughness and mechanism analysis,” Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 27, no. 3, pp. 597–601, Jun. 2012, doi: 10.1007/s11595-012-0512-5. DOI: https://doi.org/10.1007/s11595-012-0512-5
J. Plank, E. Sakai, C. W. Miao, C. Yu, and J. X. Hong, “Chemical admixtures - Chemistry, applications and their impact on concrete microstructure and durability,” 2015. doi: 10.1016/j.cemconres.2015.05.016. DOI: https://doi.org/10.1016/j.cemconres.2015.05.016
GOST 25485-2019 Cellular concretes. General specification. 2019.
GOST 17177-94 Materials and products of building thermal insulation. Test methods. 1994.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Rauan Lukpanov, Duman Dyussembinov, Aliya Altynbekova, Zhibek Zhantlesova, Tattigul Seidmarova
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Ministry of Education and Science of the Republic of Kazakhstan
Grant numbers AP13068424