Exploring the labyrinth of light: multiple Bragg Diffraction phenomena in face-centered cubic photonic crystals

Authors

DOI:

https://doi.org/10.54355/tbusphys/1.4.2023.0005

Keywords:

photonic crystals, crystallography, face-centered cubic, diffraction phenomena, labyrinth of light

Abstract

This work presents the outcomes of an experimental study aimed at exploring electron diffraction phenomena within a controlled environment. The experiment involved measuring the radii of diffraction rings produced under varying acceleration voltages, with a focus on the first-order ring. Unexpectedly, the observed values were half of the anticipated results, raising questions about the accuracy of the measurements. The analysis revealed that the measured value of d1 closely resembled the theoretical value of d2, suggesting a potential oversight of the first diffraction ring, possibly due to its diminutive size. The high brightness of the incident light further complicated the measurement process. Accounting for the possibility of overlooking the first diffraction ring, the derived values for d2 (128.24±33.26 pm) and d3 (70.00±5.21 pm) were compared to theoretical values (123 pm and 80 pm, respectively). Despite the challenges, the experimental results fell within an acceptable range, considering the inherent uncertainties. To mitigate errors in radii measurement, the article suggests the implementation of an automated system and recommends a thorough reassessment of experimental setup configurations to optimize conditions for more accurate measurements. The findings highlight the importance of methodological refinement to enhance precision and reliability in electron diffraction studies. This work contributes valuable insights to the field and underscores the continuous need for advancements in experimental techniques.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nurzhan Dosaev, Physics Department, M. Kozbayev North Kazakhstan University, Petropavlovsk, Kazakhstan

Master Student

Gulzhan Tulekova, Physics Department, M. Kozbayev North Kazakhstan University, Petropavlovsk, Kazakhstan

Master Student

References

Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion / I.I. Shishkin, M.V. Rybin, K.B. Samusev, V.G. Golubev, M.F. Limonov // Physical Review B. — 2014. — Vol. 89. — P. 035124. https://doi.org/10.1103/PhysRevB.89.035124 DOI: https://doi.org/10.1103/PhysRevB.89.035124

Photonic Crystals: Molding the Flow of Light / J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. — Princeton, USA: Princeton University Press, 2018. — 305 p.

Optical Properties of Photonic Crystals / K. Sakoda. — New York, USA: Springer, 2004. — 258 p.

Optical Properties of Photonic Structures: Interplay of Order and Disorder / M.F. Limonov, R.M. De La Rue. — Florida, USA: CRC Press, Taylor & Francis Group, 2012. — 528 p.

Crystallographic Analysis of Graphite by X-Ray Diffraction / A.N. Popova // Chemistry. — 2017. — Vol. 60. No. 9. — P. 361-365. https://doi.org/10.3103/S1068364X17090058 DOI: https://doi.org/10.3103/S1068364X17090058

Interstitials in graphite and disordered carbons / J. Lachter, R.H. Bragg // Physical Review B. — 1986. — Vol. 33. No. 12. — P. 8903. https://doi.org/10.1103/PhysRevB.33.8903. DOI: https://doi.org/10.1103/PhysRevB.33.8903

XRD Characterization of the Structure of Graphites and Carbon Materials Obtained by the Low-Temperature Graphitization of Coal Tar Pitch / Ch.N. Barnakov, G.P. Khokhlova, A.N. Popova, S.A. Sozinov, Z.R. Ismagilov // Eurasian Chemico-Technological Journal. — 2015. — Vol. 17. — P. 87–93. DOI: https://doi.org/10.18321/ectj198

Chemistry and Physics of Carbon: Volume 7 / D.B. Fischbach (edited by P. L. Walker, Jr.). — New York, USA: Marcel Dekker, 1971. — 403 p.

In Proceeding of the Second Conference on Industrial Carbon and Graphite / B. Pandic. — Society of Chemical Industry, New York, USA: Gordan and Breach, 1966. — 654 p.

Anisotropy factors of polycrystalline graphites / W.N. Reynolds // Carbon. — 1968. — Vol. 6. No. 3. — P. 277-282. https://doi.org/10.1016/0008-6223(68)90023-7. DOI: https://doi.org/10.1016/0008-6223(68)90023-7

Structural disorder induced in graphite by grinding / M. Tidjani, J. Lachter, T.S. Kabre, R.H. Bragg // Carbon. — 1968. — Vol. 24. No. 4. — P. 447 – 449. https://doi.org/10.1016/0008-6223(86)90266-6. DOI: https://doi.org/10.1016/0008-6223(86)90266-6

The diffraction of short electromagnetic waves by a crystal / W.L. Bragg // Cambridge Philosophical. Society. – 1913. — Vol. 17. — P. 43–57.

Photonic Crystals: Molding the Flow of Light / J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. — Princeton, USA: Princeton University Press, 2008. — 305 p.

Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap / M.D. Leistikow, A.P. Mosk, E. Yeganegi, S.R. Huisman, A. Lagendijk, W.L. Vos // Physical Review Letters. — 2011. — Vol. 107, No. 19. — P. 193903. https://doi.org/10.1103/PhysRevLett.107.193903 DOI: https://doi.org/10.1103/PhysRevLett.107.193903

Observation of sub-Bragg diffraction of waves in crystals / S.R. Huisman, R.V. Nair, A. Hartsuiker, L.A. Woldering, A.P. Mosk, W.L. Vos // Physical Review Letters. — 2012. — Vol. 108, No. 8. — P. 083901. https://doi.org/10.1103/PhysRevLett.108.083901 DOI: https://doi.org/10.1103/PhysRevLett.108.083901

Diffraction of light from thin-film polymethyl methacrylate opaline photonic crystals / S. G. Romanov et al // Physical Review Letters. — 2001. — Vol. 63, No. 5. — P. 056603. https://doi.org/ 10.1103/PhysRevE.63.056603 DOI: https://doi.org/10.1103/PhysRevE.63.056603

Polarized light coupling to thin silica-air opal films grown by vertical deposition / A. V. Baryshev et al. // Physical Review Letters. — 2007. — Vol. 76, No. 1. — P. 014305. https://doi.org/10.1103/PhysRevB.76.014305 DOI: https://doi.org/10.1103/PhysRevB.76.014305

Downloads

Published

2023-09-28

How to Cite

Dosaev, N., & Tulekova, G. (2023). Exploring the labyrinth of light: multiple Bragg Diffraction phenomena in face-centered cubic photonic crystals. Technobius Physics, 1(4), 0005. https://doi.org/10.54355/tbusphys/1.4.2023.0005