Stability of dielectric properties of aluminum under gamma-quantum irradiation
DOI:
https://doi.org/10.54355/tbusphys/1.3.2023.0001Keywords:
gamma ray, irradiation, 137Cs isotope, semiconductors, aluminumAbstract
In this work was to reveal the effects of gamma-quantum irradiation on the microstructure and electrophysical characteristics of aluminum. The effects of gamma irradiation with a radionuclide source of cesium-137 isotope on the properties of aluminum were studied. The maximum absorbed doses were approximately 108 rads. Aluminum plates with a thickness of 6 mm and an area of 5 cm2 were utilized during the experiments. The main challenge in obtaining reliable, adequate automated adaptation of the gamma spectrometer under conditions of change in a certain range of characteristics of the water environment (such as, for example, temperature and pressure) is the task of obtaining reliable, high-quality and reliable measurements. The paper presents the results of testing and adjustment of the complex of autonomous automated calibration of 137Cs gamma-spectrometer. The processes occurring during gamma-quantum irradiation of aluminum and their influence on dielectric properties of the material were studied. The results obtained indicate that when aluminum is irradiated with a dose of 108 rad, only a slight change in its dielectric permittivity is observed.
Downloads
Metrics
References
Defects and radiation damage in metals / M.W. Thompson. — Cambridge, UK: University press, 1969. — 394 p.
Point Defects in Solids / A. Holland. — New York, USA: Springer, 1972. — 556 p.
Dynamics of annihilation of defects in semiconductor crystals under the action of small radiation doses / P.A. Cherdantsev, I.P. Chernov, Yu.A. Timoshnikov, V.A. Korotchenko, A.P. Mamontov // Soviet physics. Semiconductors. — 1984. — Vol. 18, No. 11. — P. 1283–1285.
Chain annihilation of defects in semiconductor crystals / P.A. Cherdantsev, I.P. Chernov, A.P. Mamontov // Soviet physics. Semiconductors. — 1982. — Vol. 16, No. 3. — P. 305–308.
Mechanism of radiation ordering of semiconductor crystals by means of low doses of irradiation / P.A. Cherdantsev, I.P. Chernov, A.P. Mamontov // Radiation effects. — 1982. — Vol. 60, No. 1–4. — P. 67–71. https://doi.org/10.1080/00337578208242777 DOI: https://doi.org/10.1080/00337578208242777
High-κ gate dielectrics: Current status and materials properties considerations / G.D. Wilk, R.M. Wallace, J.M. Anthony // J. Appl. Phys. — 2001. — Vol. 89. — P. 5243–5275. https://doi.org/10.1063/1.1361065 DOI: https://doi.org/10.1063/1.1361065
Atomic layer deposition of titanium dioxide films using a metal organic precursor (C12H23N3Ti) and H2O (DI water) / B. Kim, N. Lee, S. Park, T. Park, J. Song, S. Han, H. Park, D. Lee, H. Kim, H. Jeon // Journal of Alloys and Compounds. — 2021. — Vol. 857. — P. 157931. https://doi.org/10.1016/j.jallcom.2020.157931 DOI: https://doi.org/10.1016/j.jallcom.2020.157931
Particle interaction and displacement damage in silicon devices operated in radiation environments / C. Leroy, P.G. Rancoita // Reports on Progress in Physics. — 2007. — Vol. 70. No. 4. — P. 493. https://doi.org/10.1088/00344885/70/4/R01 DOI: https://doi.org/10.1088/0034-4885/70/4/R01
Effects of γ-radiation on dielectric properties of LDPE–Al2O3 nanocomposites / F. Ciuprina, T. Zaharescu, I. Pleşa // Radiation Physics and Chemistry. — 2013. — Vol. 84. — P. 145–150. https://doi.org/10.1016/j.radphyschem.2012.06.028 DOI: https://doi.org/10.1016/j.radphyschem.2012.06.028
Total ionizing dose effects in MOS oxides and devices / T.R. Oldham, F.B. McLean // IEEE Transactions on Nuclear Science. — 2003. — Vol. 50. No. 3. — P. 483–499. https://doi.org/10.1109/TNS.2003.812927 DOI: https://doi.org/10.1109/TNS.2003.812927
The photo-multiplier radiation detector / Marshall, Fitz-Hugh, J. W. Coltman, A. I. Bennett // Review of Scientific Instruments. — 1948. — Vol. 19. No. 11. — P. 744–770. http://doi.org/10.1063/1.1741156 DOI: https://doi.org/10.1063/1.1741156
Gamma-Ray Spectroscopy Using NaI(Tl) [Electronic resource]. — [2017]. — Mode of access: https://www.ortec-online.com/-/media/ametekortec/third%20edition%20experiments/3-gamma-ray-spectroscopy-using-nai-tl.pdf (accessed date: 18.07.2023).
The distribution in direction of photoelectrons from alkali metal surfaces / I.E. Herbert, A.R. Olpin, A.L. Johnsrud // Physical Review. — 1928. — Vol. 32. No. 1. — P. 57–80. https://doi.org/10.1103/PhysRev.32.57 DOI: https://doi.org/10.1103/PhysRev.32.57
The dielectric properties and radiation resistance of aluminum oxide layers obtained by atomic layer deposition / D. Dolzhenko, V. Kapralova, N. Sudar // Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics. — 2018. — P. 8564381. https://doi.org/10.1109/EExPolytech.2018.8564381 DOI: https://doi.org/10.1109/EExPolytech.2018.8564381
Neutron and Gamma Irradiation Effects on Power Semiconductor Switches / G. E. Schwarze, A. J. Frasca // Nasa Technical Memorandum. — 1990. — Vol. 1. — P. 103200.
Metal and Alloy Bonding - An Experimental Analysis / M. Prema Rani, R. Saravanan. — New York, USA: Springer, 2012. — 151 p.
Health Physics and Radiological Health, 4th Edition. / D. Pfeiffer // Medical Physics. — 2013. — Vol. 40, No. 11. — P. 117301. https://doi.org/10.1118/1.4826186 DOI: https://doi.org/10.1118/1.4826186
NNDC | National Nuclear Data Center [Electronic resource]. — [2023]. — Mode of access: https://www.nndc.bnl.gov/ (accessed date: 18.07.2023).
Table of Radioactive Isotopes Database [Electronic resource]. — [2023]. — Mode of access: https://application.wiley-vch.de/books/info/0-471-35633-6/toi99/www/decay/tori.htm (accessed date: 18.07.2023).
Downloads
Published
How to Cite
License
Copyright (c) 2023 Adilzhan Omarov, Aigul Zhantasova, Almas Siddiqui
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.