Nonlinear conductivity in SrTiO₃-based oxide heterostructures under strong electric fields
DOI:
https://doi.org/10.54355/tbusphys/3.4.2025.0042Keywords:
nonlinear conductivity, oxide heterostructures, strong electric fields, trap-assisted transport, space-charge-limited conductionAbstract
This study explores the origin of nonlinear conductivity in epitaxial oxide heterostructures subjected to strong electric fields. We investigate vertical transport in Pt/SrTiO₃/Nb:SrTiO₃ and Pt/La₀.₇Sr₀.₃MnO₃/SrTiO₃/Nb:SrTiO₃ stacks with SrTiO₃ barrier thicknesses of 5, 10, and 20 nanometres. Heterostructures were grown by pulsed laser deposition and characterized structurally by X-ray diffraction, atomic force microscopy and cross-sectional transmission electron microscopy. Current–voltage measurements were performed over a wide voltage and temperature range, followed by model-based analysis to distinguish between Ohmic, space-charge-limited and trap-assisted conduction. Post-mortem electron microscopy was used to assess structural changes after strong-field stressing. All devices show a clear crossover from nearly linear conduction at low bias to a nonlinear regime at higher fields, with the threshold field increasing from about 110 kilovolts per centimetre for 5 nanometres to about 320 kilovolts per centimetre for 20 nanometres. Double-layer structures with La₀.₇Sr₀.₃MnO₃ exhibit systematically lower threshold fields (for example, about 140 kilovolts per centimetre for 10 nanometres) and stronger Poole–Frenkel-like response, indicating an enhanced role of interface-related trap states. Quantitative analysis of transformed current–voltage plots yields effective space-charge exponents between 1.6 and 2.1 and Poole–Frenkel slopes corresponding to activation energies of 50–120 millielectronvolts that decrease with increasing field. Electron microscopy confirms that the oxide remains structurally intact throughout the nonlinear regime and shows noticeable interface roughening only close to breakdown. These results demonstrate that nonlinear conduction in SrTiO₃-based heterostructures is governed by a field-induced crossover from bulk-limited, trap-assisted transport to increasingly interface-influenced conduction, and they define thickness and field windows where strong nonlinearity can be exploited without triggering irreversible structural damage.
Downloads
Metrics
References
J. Boonlakhorn and P. Thongbai, “Dielectric properties, nonlinear electrical response and microstructural evolution of CaCu3Ti4-xSnxO12 ceramics prepared by a double ball-milling process,” Ceram. Int., vol. 46, no. 4, pp. 4952–4958, Mar. 2020, doi: 10.1016/j.ceramint.2019.10.233. DOI: https://doi.org/10.1016/j.ceramint.2019.10.233
L. Liu et al., “Dielectric and nonlinear current-voltage characteristics of rare-earth doped CaCu3Ti4O12 ceramics,” J. Appl. Phys., vol. 110, no. 9, Nov. 2011, doi: 10.1063/1.3658258. DOI: https://doi.org/10.1063/1.3658258
C. R. Foschini, R. Tararam, A. Z. Simões, M. Cilense, E. Longo, and J. A. Varela, “CaCu3Ti4O12 thin films with non-linear resistivity deposited by RF-sputtering,” J. Alloys Compd., vol. 574, pp. 604–608, 2013, doi: 10.1016/j.jallcom.2013.05.216. DOI: https://doi.org/10.1016/j.jallcom.2013.05.216
S. A. Mojarad et al., “A comprehensive study on the leakage current mechanisms of Pt/SrTiO 3/Pt capacitor,” J. Appl. Phys., vol. 111, no. 1, Jan. 2012, doi: 10.1063/1.3673574/927851. DOI: https://doi.org/10.1063/1.3673574
D. Miron, I. Krylov, M. Baskin, E. Yalon, and L. Kornblum, “Understanding leakage currents through Al2O3 on SrTiO3,” J. Appl. Phys., vol. 126, no. 18, Nov. 2019, doi: 10.1063/1.5119703. DOI: https://doi.org/10.1063/1.5119703
S. Boyeras Baldomá et al., “Wear-out and breakdown of Ta2O5/Nb:SrTiO3 stacks,” Solid. State. Electron., vol. 198, Dec. 2022, doi: 10.1016/j.sse.2022.108462. DOI: https://doi.org/10.1016/j.sse.2022.108462
J. S. Kim et al., “Nonlinear Hall effect and multichannel conduction in LaTiO 3/SrTiO3 superlattices,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 82, no. 20, Nov. 2010, doi: 10.1103/PhysRevB.82.201407. DOI: https://doi.org/10.1103/PhysRevB.82.201407
H. Leng et al., “Competing conduction mechanisms for two-dimensional electron gas at LaTiO3/SrTiO3 heterointerfaces,” Appl. Phys. Lett., vol. 124, no. 18, Apr. 2024, doi: 10.1063/5.0202403. DOI: https://doi.org/10.1063/5.0202403
J. G. Connell, J. Nichols, J. H. Gruenewald, D. W. Kim, and S. S. A. Seo, “Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water,” Sci. Rep., vol. 6, Apr. 2016, doi: 10.1038/srep23621. DOI: https://doi.org/10.1038/srep23621
C. Yin, K. Prateek, W. Gelling, and J. Aarts, “Tunable Magnetic Scattering Effects at the LaAlO3/SrTiO3Interface by Ionic Liquid Gating,” ACS Appl. Electron. Mater., vol. 2, no. 12, pp. 3837–3842, Dec. 2020, doi: 10.1021/acsaelm.0c00654. DOI: https://doi.org/10.1021/acsaelm.0c00654
C. Funck and S. Menzel, “Comprehensive Model of Electron Conduction in Oxide-Based Memristive Devices,” ACS Appl. Electron. Mater., vol. 3, no. 9, pp. 3674–3692, Sep. 2021, doi: 10.1021/acsaelm.1c00398. DOI: https://doi.org/10.1021/acsaelm.1c00398
Y. Zhang et al., “Leakage current characteristics of SrTiO3/LaNiO3/Ba0.67Sr0.33TiO3/SrTiO3 heterostructure thin films,” Rare Met., vol. 40, no. 4, pp. 961–967, Apr. 2021, doi: 10.1007/s12598-020-01497-z. DOI: https://doi.org/10.1007/s12598-020-01497-z
A. Gómez et al., “Electric and Mechanical Switching of Ferroelectric and Resistive States in Semiconducting BaTiO3– δ Films on Silicon,” Small, vol. 13, no. 39, Oct. 2017, doi: 10.1002/smll.201701614. DOI: https://doi.org/10.1002/smll.201770208
R. Buzio and A. Gerbi, “Resistive switching suppression in metal/Nb:SrTiO3 Schottky contacts prepared by room-temperature pulsed laser deposition,” J. Phys. D. Appl. Phys., vol. 57, no. 39, Oct. 2024, doi: 10.1088/1361-6463/ad5c77. DOI: https://doi.org/10.1088/1361-6463/ad5c77
Z. Hu et al., “Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO 3 heterostructure,” Appl. Phys. Lett., vol. 102, no. 10, Mar. 2013, doi: 10.1063/1.4795145. DOI: https://doi.org/10.1063/1.4795145
Downloads
Published
How to Cite
License
Copyright (c) 2025 Ruslan Kalibek, Daria Sopyryaeva

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.