Electron hydrodynamics in ultra-clean conductors: from Dirac fluids in graphene to viscous metals

Authors

DOI:

https://doi.org/10.54355/tbusphys/3.4.2025.0041

Keywords:

electron hydrodynamics, viscous electron flow, Dirac fluid, graphene transport, ultra-clean conductors, delafossite metals

Abstract

This work examines the emerging field of electron hydrodynamics in ultra-clean conductors, where charge carriers behave collectively as a viscous fluid rather than as independent quasiparticles. The objective is to provide a unified perspective that connects theoretical frameworks with key experimental realizations in graphene, delafossite metals and topological semimetals. To this end, we performed a structured literature search across major databases and preprint servers, applied explicit inclusion and exclusion criteria to identify genuinely hydrodynamic studies, and carried out a comparative, narrative analysis of transport, thermal and imaging experiments. The collected evidence shows that hydrodynamic transport arises when electron–electron collisions dominate over momentum-relaxing processes and when device dimensions are comparable to characteristic scattering lengths. In this regime, experiments reveal geometry-dependent resistivity, negative nonlocal signals, super-ballistic conductance, strong violations of the Wiedemann–Franz law and, in some cases, Hall viscosity. Graphene provides the clearest realization of a relativistic Dirac fluid, while PdCoO₂ and WP₂ demonstrate that viscous electron flow also occurs in anisotropic and multi-band metals. This work highlights that boundaries, disorder and Fermi-surface geometry critically shape hydrodynamic signatures and must be incorporated into any quantitative interpretation. It identifies open issues concerning the roles of phonons and Umklapp processes, the reliable extraction of viscosity, and the extension of hydrodynamics to more complex correlated and topological phases. Finally, it outlines priorities for future “benchmark” experiments that combine nonlocal transport, thermal measurements and real-space imaging within the same devices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

David Paulsen, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom

PhD Student, Research Assistant

References

I. Terasaki, “Thermal conductivity and thermoelectric power of semiconductors,” in Comprehensive Semiconductor Science and Technology, Second Edition: Volumes 1-3, vol. 1, Elsevier, 2024, p. V1:203-V1:241. doi: 10.1016/B978-0-323-96027-4.00008-5. DOI: https://doi.org/10.1016/B978-0-323-96027-4.00008-5

Y. M. Lee, J. H. Kim, and J. H. Lee, “Direct numerical simulation of a turbulent Couette-Poiseuille flow with a rod-roughened wall,” Phys. Fluids, vol. 30, no. 10, Oct. 2018, doi: 10.1063/1.5049173. DOI: https://doi.org/10.1063/1.5049173

D. S. Sankar and K. K. Viswanathan, “Mathematical Analysis of Poiseuille Flow of Casson Fluid past Porous Medium,” J. Appl. Comput. Mech., vol. 8, no. 2, pp. 456–474, 2022, doi: 10.22055/jacm.2020.31961.1945.

Z. Bouafia, M. Benzahra, and M. Mansour, “Decoherence Channels Effects on Thermal Quantum Correlations Within a Two-Dimensional Graphene System,” Brazilian J. Phys., vol. 54, no. 5, Oct. 2024, doi: 10.1007/s13538-024-01585-w. DOI: https://doi.org/10.1007/s13538-024-01585-w

Z. Xiong, S. Meng, X. Ma, B. Gao, and H. Zhao, “Dramatic n-Type Doping of Monolayer Graphene with Ferroelectric LiNbO3Crystals and Bilayer Two-Dimensional Electron Gases,” J. Phys. Chem. C, vol. 126, no. 9, pp. 4534–4541, Mar. 2022, doi: 10.1021/acs.jpcc.1c10856. DOI: https://doi.org/10.1021/acs.jpcc.1c10856

M. V.M. and K. I.V., “Collective plasma excitations in two-dimensional electron systems,” Physics-Uspekhi, vol. 63, no. 10, pp. 975–993, Oct. 2021, doi: 10.3367/UFNe.2019.07.038637. DOI: https://doi.org/10.3367/UFNe.2019.07.038637

B. N. Narozhny, “Electronic hydrodynamics in graphene,” Ann. Phys. (N. Y)., vol. 411, p. 167979, Dec. 2019, doi: 10.1016/J.AOP.2019.167979. DOI: https://doi.org/10.1016/j.aop.2019.167979

B. N. Narozhny, “Hydrodynamic approach to two-dimensional electron systems,” La Riv. del Nuovo Cim. 2022 4510, vol. 45, no. 10, pp. 661–736, Jul. 2022, doi: 10.1007/S40766-022-00036-Z. DOI: https://doi.org/10.1007/s40766-022-00036-z

M. J. H. Ku et al., “Imaging viscous flow of the Dirac fluid in graphene,” Nature, vol. 583, no. 7817, pp. 537–541, Jul. 2020, doi: 10.1038/s41586-020-2507-2. DOI: https://doi.org/10.1038/s41586-020-2507-2

G. E. Volovik, “Quantum Turbulence and Planckian Dissipation,” JETP Lett., vol. 115, no. 8, pp. 461–465, Apr. 2022, doi: 10.1134/S0021364022100344. DOI: https://doi.org/10.1134/S0021364022100344

S. A. Hartnoll and A. P. MacKenzie, “Colloquium: Planckian dissipation in metals,” Rev. Mod. Phys., vol. 94, no. 4, Oct. 2022, doi: 10.1103/RevModPhys.94.041002. DOI: https://doi.org/10.1103/RevModPhys.94.041002

G. Baker et al., “Nonlocal Electrodynamics in Ultrapure PdCoO2,” Phys. Rev. X, vol. 14, no. 1, Jan. 2024, doi: 10.1103/PhysRevX.14.011018. DOI: https://doi.org/10.1103/PhysRevX.14.011018

B. Aditya and M. A. Majidi, “Investigation on minimal Hamiltonian for system of material with highly anisotropic transport and optical properties SrNbO3.4,” AIP Conf. Proc., vol. 2234, May 2020, doi: 10.1063/5.0008531. DOI: https://doi.org/10.1063/5.0008531

A. Ptok, K. J. Kapcia, and P. Piekarz, “Effects of Pair-Hopping Coupling on Properties of Multi-Band Iron-Based Superconductors,” Front. Phys., vol. 8, Aug. 2020, doi: 10.3389/fphy.2020.00284. DOI: https://doi.org/10.3389/fphy.2020.00284

A. Lucas and K. C. Fong, “Hydrodynamics of electrons in graphene,” J. Phys. Condens. Matter, vol. 30, no. 5, Jan. 2018, doi: 10.1088/1361-648X/aaa274. DOI: https://doi.org/10.1088/1361-648X/aaa274

V. Grimalsky, Y. Rapoport, S. Koshevaya, A. Nosich, and J. Escobedo-Alatorre, “Linear and nonlinear resonant properties of electron gas in n-InSb and graphene layers in terahertz range in bias magnetic fields,” Mater. Res. Express, vol. 12, no. 1, Jan. 2025, doi: 10.1088/2053-1591/ada5b7. DOI: https://doi.org/10.1088/2053-1591/ada5b7

V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, and M. Tecpoyotl-Torres, “Resonant Generation of Higher Harmonics of Terahertz Pulses in the Layered Structures Dielectric - Graphene,” Proc. Int. Conf. Microelectron. ICM, vol. 2021-September, pp. 89–92, Sep. 2021, doi: 10.1109/MIEL52794.2021.9569191. DOI: https://doi.org/10.1109/MIEL52794.2021.9569191

G. Varnavides, A. S. Jermyn, P. Anikeeva, C. Felser, and P. Narang, “Electron hydrodynamics in anisotropic materials,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-18553-y. DOI: https://doi.org/10.1038/s41467-020-18553-y

Z. Wang, H. Liu, H. Jiang, and X. C. Xie, “Numerical study of negative nonlocal resistance and backflow current in a ballistic graphene system,” Phys. Rev. B, vol. 100, no. 15, Oct. 2019, doi: 10.1103/PhysRevB.100.155423. DOI: https://doi.org/10.1103/PhysRevB.100.155423

J. Crossno et al., “Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene,” Science (80-. )., vol. 351, no. 6277, pp. 1058–1061, Mar. 2016, doi: 10.1126/science.aad0343. DOI: https://doi.org/10.1126/science.aad0343

J. A. Sulpizio et al., “Visualizing Poiseuille flow of hydrodynamic electrons,” Nature, vol. 576, no. 7785, pp. 75–79, Dec. 2019, doi: 10.1038/s41586-019-1788-9. DOI: https://doi.org/10.1038/s41586-019-1788-9

P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P. Mackenzie, “Evidence for hydrodynamic electron flow in PdCoO2,” Science (80-. )., vol. 351, no. 6277, pp. 1061–1064, Mar. 2016, doi: 10.1126/science.aac8385. DOI: https://doi.org/10.1126/science.aac8385

Downloads

Published

2025-12-20

How to Cite

Paulsen, D. (2025). Electron hydrodynamics in ultra-clean conductors: from Dirac fluids in graphene to viscous metals. Technobius Physics, 3(4), 0041. https://doi.org/10.54355/tbusphys/3.4.2025.0041