Quantum effects in weak gravitational fields: towards tabletop tests of quantum gravity

Authors

DOI:

https://doi.org/10.54355/tbusphys/3.3.2025.0037

Keywords:

quantum gravity, weak gravitational fields, nanoparticle interferometry, decoherence, coherence times, collapse models, CSL, cryogenic ultra-high vacuum, gravitational phases, tabletop experiments

Abstract

This study explores quantum effects in weak gravitational fields with the aim of identifying feasible pathways towards tabletop tests of quantum gravity. Using numerical simulations of matter-wave interference for nanoparticles with masses between and  kg, we investigate how environmental and fundamental decoherence mechanisms shape observable signatures. The results reveal a mass-dependent reduction in interference visibility, dropping from near unity at  kg to below 0.2 at  kg. Coherence times were found to exceed one second for particles lighter than 10^(-16) kg under cryogenic ultra-high-vacuum conditions, but decreased to sub-millisecond scales for  kg particles at room temperature, confirming thermal radiation as the dominant source of decoherence. In parallel, collapse models such as CSL predict additional suppression of visibility for interrogation times of 0.1 s, particularly for masses above  kg, enabling discrimination between environmental and intrinsic decoherence mechanisms. These findings underscore the necessity of maintaining ultra-high vacuum and cryogenic environments to detect gravitationally induced quantum phases, thereby providing a practical framework for near-future interferometry experiments. While the present work is limited to phenomenological models and simulated data, it establishes a roadmap for extending investigations to heavier mass regimes, incorporating realistic noise sources, and testing alternative collapse scenarios.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Elmira Sayabekova, Faculty of Mathematics, Physics and Computer Science, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan

Master Student

References

O. Romero-Isart et al., “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett., vol. 107, no. 2, p. 020405, Jul. 2011, doi: 10.1103/PhysRevLett.107.020405.

C. Wan et al., “Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions,” Phys. Rev. Lett., vol. 117, no. 14, p. 143003, Sep. 2016, doi: 10.1103/PhysRevLett.117.143003.

M. Carlesso, A. Bassi, P. Falferi, and A. Vinante, “Experimental bounds on collapse models from gravitational wave detectors,” Phys. Rev. D, vol. 94, no. 12, p. 124036, Dec. 2016, doi: 10.1103/PhysRevD.94.124036.

D. Carney, P. C. E. Stamp, and J. M. Taylor, “Tabletop experiments for quantum gravity: a user’s manual,” Class. Quantum Gravity, vol. 36, no. 3, Sep. 2018, doi: 10.1088/1361-6382/aaf9ca.

F. Tebbenjohanns, M. L. Mattana, M. Rossi, M. Frimmer, and L. Novotny, “Quantum control of a nanoparticle optically levitated in cryogenic free space,” Nature, vol. 595, no. 7867, pp. 378–382, Jul. 2021, doi: 10.1038/S41586-021-03617-W;TECHMETA.

L. Dania et al., “High-purity quantum optomechanics at room temperature,” Nat. Phys. 2025, pp. 1–6, Dec. 2024, doi: 10.1038/S41567-025-02976-9;SUBJMETA.

L. Neumeier, M. A. Ciampini, O. Romero-Isart, M. Aspelmeyer, and N. Kiesel, “Fast Quantum Interference of a Nanoparticle via Optical Potential Control,” Proc. Natl. Acad. Sci. U. S. A., vol. 121, no. 4, Jul. 2022, doi: 10.1073/pnas.2306953121.

L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, and T. E. Northup, “Ultrahigh Quality Factor of a Levitated Nanomechanical Oscillator,” Phys. Rev. Lett., vol. 132, no. 13, p. 133602, Mar. 2024, doi: 10.1103/PhysRevLett.132.133602.

J. Schäfer, B. A. Stickler, and K. Hornberger, “Decoherence of dielectric particles by thermal emission,” Phys. Rev. Res., vol. 6, no. 4, p. 043307, Dec. 2024, doi: 10.1103/PhysRevResearch.6.043307.

A. Hopper and P. F. Barker, “A levitated atom-nanosphere hybrid quantum system,” New J. Phys., vol. 26, no. 1, p. 013015, Jan. 2024, doi: 10.1088/1367-2630/AD19F6.

W. McKinney, “Data Structures for Statistical Computing in Python,” scipy, pp. 56–61, 2010, doi: 10.25080/MAJORA-92BF1922-00A.

S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical Modeling with Python,” Proc. 9th Python Sci. Conf., pp. 92–96, 2010, doi: 10.25080/MAJORA-92BF1922-011.

Downloads

Published

2025-09-14

How to Cite

Sayabekova, E. (2025). Quantum effects in weak gravitational fields: towards tabletop tests of quantum gravity. Technobius Physics, 3(3), 0037. https://doi.org/10.54355/tbusphys/3.3.2025.0037