Correlation between surface nanomorphology and charge density waves in 1T-TaS₂

Authors

DOI:

https://doi.org/10.54355/tbusphys/3.3.2025.0036

Keywords:

scanning tunneling microscopy, charge density waves, surface roughness, nanomorphology, Fourier analysis, commensurate superstructure

Abstract

This study investigates the structural and electronic properties of 1T-TaS₂ using scanning tunneling microscopy (STM) and complementary Fourier analysis. The objective was to correlate surface morphology with the emergence of commensurate charge density wave (CDW) order and to quantify the periodicities governing its modulation. High-resolution STM imaging revealed both the atomic lattice and the superimposed CDW, with measured lattice constant of 0.343 ± 0.02 nm and CDW periodicities of 1.1 ± 0.05 nm and 2.0 ± 0.05 nm. Fourier transforms confirmed reciprocal vectors of 2.9 ± 0.1 nm⁻¹ for the lattice and 0.5–0.9 ± 0.1 nm⁻¹ for the CDW, rotated by approximately 30° with respect to the atomic lattice, consistent with a commensurate  ×  reconstruction. Surface roughness characterization showed root-mean-square variations of 3.5 ± 0.2 nm and terrace widths of only 25–40 nm, reflecting the brittle nature of the crystal and highlighting constraints for achieving atomically stable imaging. Bias-dependent measurements demonstrated contrast inversion between filled and empty states, providing direct evidence of the electronic origin of the CDW. These results confirm the robustness of CDW ordering in 1T-TaS₂, address the research objective of linking morphology with electronic superstructures, and highlight both the opportunities and challenges of using this material as a platform for studying correlated electron phenomena in low-dimensional solids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Anton Shuravin, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic

PhD Student, Research Assistant

References

L. Chaix et al., “Bulk charge density wave and electron-phonon coupling in superconducting copper oxychlorides,” Phys. Rev. Res., vol. 4, no. 3, Jul. 2022, doi: 10.1103/PHYSREVRESEARCH.4.033004.

S. Dattagupta, “Peierls’ elucidation of diamagnetism,” Resonance, vol. 15, no. 5, pp. 428–433, 2010, doi: 10.1007/S12045-010-0069-6.

S. Mehta, R. Thakur, S. Rani, B. M. Nagaraja, S. Mehla, and I. Kainthla, “Recent advances in ternary transition metal dichalcogenides for electrocatalytic hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 82, pp. 1061–1080, Sep. 2024, doi: 10.1016/J.IJHYDENE.2024.08.051.

R. Zhao, B. Grisafe, R. K. Ghosh, K. Wang, S. Datta, and J. Robinson, “Stabilizing the commensurate charge-density wave in 1T-tantalum disulfide at higher temperatures via potassium intercalation,” Nanoscale, vol. 11, no. 13, pp. 6016–6022, Mar. 2019, doi: 10.1039/C8NR09732A.

L. Ma et al., “A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2,” Nat. Commun., vol. 7, no. 1, pp. 1–8, Mar. 2016, doi: 10.1038/NCOMMS10956;SUBJMETA=119,301,639,925,995;KWRD=ELECTRONIC+PROPERTIES+AND+MATERIALS,NANOSCIENCE+AND+TECHNOLOGY.

J. Maklar et al., “Coherent light control of a metastable hidden state,” Sci. Adv., vol. 9, no. 47, Nov. 2023, doi: 10.1126/SCIADV.ADI4661/SUPPL_FILE/SCIADV.ADI4661_MOVIE_S1.ZIP.

L. Y. Gan, L. H. Zhang, Q. Zhang, C. S. Guo, U. Schwingenschlögl, and Y. Zhao, “Strain tuning of the charge density wave in monolayer and bilayer 1T-TaS2,” Phys. Chem. Chem. Phys., vol. 18, no. 4, pp. 3080–3085, Jan. 2016, doi: 10.1039/C5CP05695K.

J. W. Park, J. Lee, and H. W. Yeom, “Stacking and spin order in a van der Waals Mott insulator 1T-TaS2,” Commun. Mater., vol. 4, no. 1, pp. 1–6, Dec. 2023, doi: 10.1038/S43246-023-00425-9;SUBJMETA=119,301,544,639,995;KWRD=ELECTRONIC+PROPERTIES+AND+MATERIALS,SURFACES.

N. Tilak et al., “Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure,” Nat. Commun. , vol. 15, no. 1, pp. 1–8, Dec. 2024, doi: 10.1038/S41467-024-51608-Y;TECHMETA=119,123,138,147;SUBJMETA=639,918,925;KWRD=GRAPHENE,NANOSCIENCE+AND+TECHNOLOGY.

I. Vaskivskyi et al., “Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2,” Sci. Adv., vol. 1, no. 6, Jul. 2015, doi: 10.1126/SCIADV.1500168,.

P. Fazekas and E. Tosatti, “Charge carrier localization in pure and doped 1T-TaS2,” Phys. B+C, vol. 99, no. 1–4, pp. 183–187, Jan. 1980, doi: 10.1016/0378-4363(80)90229-6.

J. A. Wilson, F. J. Di Salvo, and S. Mahajan, “Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides,” Adv. Phys., vol. 24, no. 2, pp. 117–201, Jan. 1975, doi: 10.1080/00018737500101391;WGROUP:STRING:PUBLICATION.

Y. Wang, Y. Ye, and K. Wu, “Simultaneous observation of the triangular and honeycomb structures on highly oriented pyrolytic graphite at room temperature: An STM study,” Surf. Sci., vol. 600, no. 3, pp. 729–734, Feb. 2006, doi: 10.1016/J.SUSC.2005.12.001.

Y. Geng et al., “Filling-Dependent Intertwined Electronic and Atomic Orders in the Flat-Band State of 1T-TaS2,” ACS Nano, vol. 19, no. 8, pp. 7784–7792, Mar. 2025, doi: 10.1021/ACSNANO.4C13437.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum., vol. 78, no. 1, 2007, doi: 10.1063/1.2432410.

D. Nečas and P. Klapetek, “Gwyddion: An open-source software for SPM data analysis,” Cent. Eur. J. Phys., vol. 10, no. 1, pp. 181–188, Feb. 2012, doi: 10.2478/S11534-011-0096-2.

K. Sun, S. Sun, C. Zhu, H. Tian, H. Yang, and J. Li, “Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2−xSex,” Sci. Adv. , vol. 4, no. 7, Jul. 2018, doi: 10.1126/SCIADV.AAS9660.

Y. Fujisawa, T. Shimabukuro, H. Kojima, K. Kobayashi, S. Demura, and H. Sakata, “Effect of Fe-doping on CDW state in 1T-TaS2 investigated by STM/STS,” J. Phys. Conf. Ser., vol. 871, no. 1, Jul. 2017, doi: 10.1088/1742-6596/871/1/012003.

C. J. Chen et al., “Tunable Electron Correlation in Epitaxial 1T-TaS2 Spirals,” Adv. Mater., vol. 37, no. 6, Feb. 2025, doi: 10.1002/ADMA.202413926.

S. L. L. M. Ramos et al., “Selective Electron-Phonon Coupling in Dimerized 1T-TaS2 Revealed by Resonance Raman Spectroscopy,” ACS Nano, vol. 17, no. 16, pp. 15883–15892, Aug. 2023, doi: 10.1021/ACSNANO.3C03902.

I. Ahmad, “Deposition and distribution of gold nanoparticles in a coffee-stain ring on the HOPG terraces,” Bull. Mater. Sci., vol. 43, no. 1, Dec. 2020, doi: 10.1007/S12034-020-02094-7.

Downloads

Published

2025-09-09

How to Cite

Shuravin, A. (2025). Correlation between surface nanomorphology and charge density waves in 1T-TaS₂. Technobius Physics, 3(3), 0036. https://doi.org/10.54355/tbusphys/3.3.2025.0036