Comprehensive Overview of X-Ray Diffraction: Principles, Techniques, and Applications in Material Science
DOI:
https://doi.org/10.54355/tbusphys/3.3.2025.0035Keywords:
X-ray, diffraction, material science, non-destructive analysis, microstructure characterizationAbstract
This paper provides an overview of XRD, including its principles, instrumentation, data analysis, and applications. While visual characteristics can aid in identifying certain minerals, powder XRD remains the most reliable and accurate method for phase identification and structural analysis. Beyond crystallography, XRD offers valuable insights into the short- and intermediate-range structures of amorphous materials such as glasses, revealing its broader relevance in emerging technologies. It is widely used for analyzing powders, solids, thin films, and nanomaterial. XRD is often combined with techniques like SEM, TEM, PCS, EBSD, SPM, DLS, ND, and SAED to enhance material characterization. The paper covers fundamental principles such as Bragg’s Law and X-ray interaction with crystal lattices, as well as advancements in XRD instrumentation, including X-ray sources, diffractometer, and detectors, reflecting the rapid scientific progress in XRD technology.
Downloads
Metrics
References
“Introduction to X-ray Powder Diffraction X-Ray Analytical Methods Uses of X-Ray Powder Diffraction Introduction to X-ray Powder Diffraction”.
S. V. Borisov and N. V. Podberezskaya, “X-ray diffraction analysis: A brief history and achievements of the first century,” J. Struct. Chem., vol. 53, no. 1, pp. 1–3, Dec. 2012, doi: 10.1134/S0022476612070013/METRICS. DOI: https://doi.org/10.1134/S0022476612070013
A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Crit. Rev. Anal. Chem., vol. 45, no. 4, pp. 289–299, Oct. 2015, doi: 10.1080/10408347.2014.949616. DOI: https://doi.org/10.1080/10408347.2014.949616
N. K. Subramani, “Revisiting Powder X-ray Diffraction Technique: A Powerful Tool to Characterize Polymers and their Composite Films,” Res. Rev. J. Mater. Sci., vol. 04, no. 04, 2016, doi: 10.4172/2321-6212.1000158. DOI: https://doi.org/10.4172/2321-6212.1000158
J. Lee, J. Oba, N. Ohba, and S. Kajita, “Creation of crystal structure reproducing X-ray diffraction pattern without using database,” npj Comput. Mater., vol. 9, no. 1, pp. 1–9, Dec. 2023, doi: 10.1038/S41524-023-01096-3;SUBJMETA=1032,1034,1037,12,301,639,930;KWRD=CHARACTERIZATION+AND+ANALYTICAL+TECHNIQUES,COMPUTATIONAL+METHODS,DESIGN. DOI: https://doi.org/10.1038/s41524-023-01096-3
K. Kozlovskaya et al., “Determination of Absolute Structure of Chiral Crystals Using Three-Wave X-ray Diffraction,” Cryst. 2021, Vol. 11, Page 1389, vol. 11, no. 11, p. 1389, Nov. 2021, doi: 10.3390/CRYST11111389. DOI: https://doi.org/10.3390/cryst11111389
M. A. Rodriguez et al., “Characterization of MoS2 films via simultaneous grazing incidence X-ray diffraction and grazing incidence X-ray fluorescence (GIXRD/GIXRF),” Powder Diffr., vol. 39, no. 2, pp. 60–68, Jun. 2024, doi: 10.1017/S0885715624000319. DOI: https://doi.org/10.1017/S0885715624000319
S. Rashid et al., “A Critical Comparison Among High-Resolution Methods for Spatially Resolved Nano-Scale Residual Stress Analysis in Nanostructured Coatings,” Int. J. Mol. Sci. 2025, Vol. 26, Page 3296, vol. 26, no. 7, p. 3296, Apr. 2025, doi: 10.3390/IJMS26073296. DOI: https://doi.org/10.3390/ijms26073296
M. Arivanandhan et al., “Directional growth of organic NLO crystal by different growth methods: A comparative study by means of XRD, HRXRD and laser damage threshold,” J. Cryst. Growth, vol. 310, no. 21, pp. 4587–4592, Oct. 2008, doi: 10.1016/J.JCRYSGRO.2008.08.036. DOI: https://doi.org/10.1016/j.jcrysgro.2008.08.036
A. Y. Seregin, P. A. Prosekov, F. N. Chukhovsky, Y. A. Volkovsky, A. E. Blagov, and M. V. Kovalchuk, “Experimental and Theoretical Study of the Triple-Crystal High-Resolution X-Ray Diffraction Scheme in Reciprocal Space Mapping Technique,” Crystallogr. Reports, vol. 64, no. 4, pp. 545–552, Jul. 2019, doi: 10.1134/S1063774519040175/METRICS. DOI: https://doi.org/10.1134/S1063774519040175
Z. Chen et al., “Combining x-ray real and reciprocal space mapping techniques to explore the epitaxial growth of semiconductors,” J. Phys. D. Appl. Phys., vol. 56, no. 24, p. 245102, Apr. 2023, doi: 10.1088/1361-6463/ACC597. DOI: https://doi.org/10.1088/1361-6463/acc597
V. V. Chernyshev, “Structural Characterization of Pharmaceutical Cocrystals with the Use of Laboratory X-ray Powder Diffraction Patterns,” Cryst. 2023, Vol. 13, Page 640, vol. 13, no. 4, p. 640, Apr. 2023, doi: 10.3390/CRYST13040640. DOI: https://doi.org/10.3390/cryst13040640
C. Scheuerlein, M. Di Michiel, and F. Buta, “Synchrotron radiation techniques for the characterization of Nb 3Sn superconductors,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 2653–2656, Jun. 2009, doi: 10.1109/TASC.2009.2019101. DOI: https://doi.org/10.1109/TASC.2009.2019101
V. S. Vinila et al., “XRD Studies on Nano Crystalline Ceramic Superconductor PbSrCaCuO at Different Treating Temperatures,” Cryst. Struct. Theory Appl., vol. 3, no. 1, pp. 1–9, Mar. 2014, doi: 10.4236/CSTA.2014.31001. DOI: https://doi.org/10.4236/csta.2014.31001
R. J. Rodbari, R. Wendelbo, L. C. L. Agostinho Jamshidi, E. Padrón Hernández, and L. Nascimento, “STUDY OF PHYSICAL AND CHEMICAL CHARACTERIZATION OF NANOCOMPOSITE POLYSTYRENE / GRAPHENE OXIDE HIGH ACIDITY CAN BE APPLIED IN THIN FILMS,” J. Chil. Chem. Soc., vol. 61, no. 3, pp. 3120–3124, Sep. 2016, doi: 10.4067/S0717-97072016000300023. DOI: https://doi.org/10.4067/S0717-97072016000300023
B. Lavina, P. Dera, and R. T. Downs, “Modern X-ray Diffraction Methods in Mineralogy and Geosciences,” Rev. Mineral. Geochemistry, vol. 78, no. 1, pp. 1–31, Jan. 2014, doi: 10.2138/RMG.2014.78.1. DOI: https://doi.org/10.2138/rmg.2014.78.1
A. Ghasemi, “Ferrite characterization techniques,” Magn. Ferrites Relat. Nanocomposites, pp. 49–124, Jan. 2022, doi: 10.1016/B978-0-12-824014-4.00002-0. DOI: https://doi.org/10.1016/B978-0-12-824014-4.00002-0
P. Sarrazin, D. Blake, S. Feldman, S. Chipera, D. Vaniman, and D. Bish, “Field deployment of a portable X-ray diffraction/X-ray flourescence instrument on Mars analog terrain,” Powder Diffr., vol. 20, no. 2, pp. 128–133, Jun. 2005, doi: 10.1154/1.1913719. DOI: https://doi.org/10.1154/1.1913719
Downloads
Published
How to Cite
License
Copyright (c) 2025 Hersh F Mahmood, Soran Abdrahman Ahmad, Masood Abu-Bakr

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.