Synthesis and research of optical and electrical properties of tin dioxide nanoprolocs in the SiO2/Si track template

Authors

DOI:

https://doi.org/10.54355/tbusphys/3.1.2025.0026

Keywords:

SiO2/Si track templating, chemical deposition, SnO2 nanowires, tin dioxide, templating synthesis

Abstract

This work presents a study of the structural, optical and electrical characteristics of tin dioxide (SnO2) nanowires obtained by chemical deposition (CD) into SiO2/Si track templating (templating synthesis). Latent tracks in the SiO2 layer were created by irradiation with fast heavy ions (FHE) Xe at 200 MeV energy with fluence F = 108 cm-2 followed by etching in 4% aqueous hydrofluoric acid (HF) solution. The selected XO method is widely used for the deposition of semiconductor oxide nanowires in SiO2 nanopores. The CW method is cost-effective because it does not require any special equipment for the deposition of nanowires. To realize the deposition, a solution of metal coordination compound and reducing agent is used. To analyze the pore filling after CW process, the surface morphology of the samples was investigated using Zeiss Crossbeam 540 scanning microscope. The crystallographic structure of SnO2/SiO2/Si nanostructures with SnO2 nanopore filling was investigated by X-ray diffraction. X-ray diffraction analysis (XRD) is performed on a Rigaku SmartLab X-ray diffractometer. A SnO2-NP/SiO2/Si nanostructure with orthorhombic crystalline structure of SnO2 nanowires supplemented with metallic tin was obtained. The photoluminescence spectra were measured under excitation with 5.17 eV wavelength light using a CM2203 spectrofluorimeter. Gaussian decomposition of the photoluminescence spectra of SnO2-NP/SiO2/Si structures, showed that they have low intensity, which is mainly due to the presence of defects such as oxygen vacancies, interdomain tin or tin with damaged bonds. The electrical characterization study was carried out using a VersaStat 3 patentiostat. The WAC measurement of the nanowire obtained by chemical deposition showed that due to the presence of metallic tin, the conductivity is close to metallic.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Diana Junisbekova, Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Doctor PhD, Senior Lecturer

Zein Baimukhanov, L.N.Gumilyov Eurasian National University, Faculty of Physics and Technical Sciences, Astana, Kazakhstan

Candidate of Physical and Mathematical Sciences, Acting Associate Professor

Alma Dauletbekova, L.N.Gumilyov Eurasian National University, Faculty of Physics and Technical Sciences, Astana, Kazakhstan

Doctor of Physical and Mathematical Sciences, Professor, Faculty of Physics and Technical Sciences

References

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev., vol. 110, no. 1, pp. 389–458, Jan. 2010, doi: 10.1021/CR900137K/ASSET/IMAGES/CR-2009-00137K_M028.GIF.

“(PDF) Nanotechnology, Big things from a Tiny World: a Review.” Accessed: Mar. 13, 2025. [Online]. Available: https://www.researchgate.net/publication/46189710_Nanotechnology_Big_things_from_a_Tiny_World_a_Review

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 2007 611, vol. 6, no. 11, pp. 841–850, 2007, doi: 10.1038/nmat2028.

M. R. Jones, K. D. Osberg, R. J. MacFarlane, M. R. Langille, and C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev., vol. 111, no. 6, pp. 3736–3827, Jun. 2011, doi: 10.1021/CR1004452/ASSET/CR1004452.FP.PNG_V03.

D. Routkevitch, T. Bigioni, M. Moskovits, and J. M. Xu, “Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates,” J. Phys. Chem., vol. 100, no. 33, pp. 14037–14047, Aug. 1996, doi: 10.1021/JP952910M.

F. Zhang and D. Zhao, “Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly,” Nano Res., vol. 2, no. 4, pp. 292–305, Apr. 2009, doi: 10.1007/S12274-009-9027-6/METRICS.

“Preparation of CdS Single‐Crystal Nanowires by Electrochemically Induced Deposition - Xu - 2000 - Advanced Materials - Wiley Online Library.” Accessed: Mar. 13, 2025. [Online]. Available: https://advanced.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291521-4095%28200004%2912%3A7%3C520%3A%3AAID-ADMA520%3E3.0.CO%3B2-%23

C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach,” Science (80-. )., vol. 266, no. 5193, pp. 1961–1966, Dec. 1994, doi: 10.1126/SCIENCE.266.5193.1961.

I. U. Schuchert, M. E. T. Molares, D. Dobrev, J. Vetter, R. Neumann, and M. Martin, “Electrochemical Copper Deposition in Etched Ion Track Membranes : Experimental Results and a Qualitative Kinetic Model,” J. Electrochem. Soc., vol. 150, no. 4, p. C189, Feb. 2003, doi: 10.1149/1.1554722.

S. E. Demyanov et al., “On the morphology of Si/SiO2/Ni nanostructures with swift heavy ion tracks in silicon oxide,” J. Surf. Investig., vol. 8, no. 4, pp. 805–813, Aug. 2014, doi: 10.1134/S1027451014040326/METRICS.

V. Sivakov et al., “Silver nanostructures formation in porous Si/SiO2 matrix,” J. Cryst. Growth, vol. 400, pp. 21–26, Aug. 2014, doi: 10.1016/J.JCRYSGRO.2014.04.024.

A. Barranco, J. Cotrino, F. Yubero, J. P. Espinós, and A. R. González-Elipe, “Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A, vol. 22, no. 4, pp. 1275–1284, Jul. 2004, doi: 10.1116/1.1761072.

G. Amato, S. Borini, A. M. Rossi, L. Boarino, and M. Rocchia, “Si/SiO2 nanocomposite by CVD infiltration of porous SiO2,” Phys. status solidi, vol. 202, no. 8, pp. 1529–1532, Jun. 2005, doi: 10.1002/PSSA.200461172.

D. Fink, A. Chandra, P. Alegaonkar, A. Berdinsky, A. Petrov, and D. Sinha, “Nanoclusters and nanotubes for swift ion track technology,” Radiat. Eff. Defects Solids, vol. 162, no. 3–4, pp. 151–156, Mar. 2007, doi: 10.1080/10420150601132487.

Y. A. Ivanova et al., “Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template,” J. Mater. Sci., vol. 42, no. 22, pp. 9163–9169, Nov. 2007, doi: 10.1007/S10853-007-1926-X/METRICS.

K. Hoppe et al., “An ion track based approach to nano- and micro-electronics,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 266, no. 8, pp. 1642–1646, Apr. 2008, doi: 10.1016/J.NIMB.2007.12.069.

A. Razpet, A. Johansson, G. Possnert, M. Skupiński, K. Hjort, and A. Hallén, “Fabrication of high-density ordered nanoarrays in silicon dioxide by MeV ion track lithography,” J. Appl. Phys., vol. 97, no. 4, Feb. 2005, doi: 10.1063/1.1850617/914557.

A. Dallanora et al., “Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability,” J. Appl. Phys., vol. 104, no. 2, Jul. 2008, doi: 10.1063/1.2957052/936055.

“Characteristic features of electric charge transfer processes in Si/SiO2/Ni nanostructures in strong magnetic fields | Request PDF.” Accessed: Mar. 13, 2025. [Online]. Available: https://www.researchgate.net/publication/290999855_Characteristic_features_of_electric_charge_transfer_processes_in_SiSiO2Ni_nanostructures_in_strong_magnetic_fields

L. A. Vlasukova et al., “Threshold and criterion for ion track etching in SiO2 layers grown on Si,” Vacuum, vol. 105, pp. 107–110, Jul. 2014, doi: 10.1016/J.VACUUM.2014.01.005.

A. Benyagoub and M. Toulemonde, “Ion tracks in amorphous silica,” J. Mater. Res., vol. 30, no. 9, pp. 1529–1543, Jan. 2015, doi: 10.1557/JMR.2015.75/METRICS.

E. Kaniukov, V. Bundyukova, M. Kutuzau, and D. Yakimchuk, “Peculiarities of formation and characterization of SiO2/Si ion-track template,” NATO Sci. Peace Secur. Ser. B Phys. Biophys., pp. 41–57, 2019, doi: 10.1007/978-94-024-1687-9_3.

A. Vaseashta and D. Dimova-Malinovska, “Nanostructured and nanoscale devices, sensors and detectors,” Sci. Technol. Adv. Mater., vol. 6, no. 3-4 SPEC. ISS., pp. 312–318, Apr. 2005, doi: 10.1016/J.STAM.2005.02.018.

J. C. Chou and Y. F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method,” Sensors Actuators B Chem., vol. 86, no. 1, pp. 58–62, Aug. 2002, doi: 10.1016/S0925-4005(02)00147-8.

J. S. Lee, S. K. Sim, B. Min, K. Cho, S. W. Kim, and S. Kim, “Structural and optoelectronic properties of SnO2 nanowires synthesized from ball-milled SnO2 powders,” J. Cryst. Growth, vol. 267, no. 1–2, pp. 145–149, Jun. 2004, doi: 10.1016/J.JCRYSGRO.2004.03.030.

Z. Ying, Q. Wan, Z. T. Song, and S. L. Feng, “Controlled synthesis of branched SnO2 nanowhiskers,” Mater. Lett., vol. 59, no. 13, pp. 1670–1672, Jun. 2005, doi: 10.1016/J.MATLET.2005.01.044.

Y. Fan, J. Liu, H. Lu, P. Huang, and D. Xu, “Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation,” Electrochim. Acta, vol. 76, pp. 475–479, Aug. 2012, doi: 10.1016/J.ELECTACTA.2012.05.067.

H. Zhang et al., “Preparation of SnO2 Nanowires by Solvent-Free Method Using Mesoporous Silica Template and Their Gas Sensitive Properties,” J. Nanosci. Nanotechnol., vol. 11, no. 12, pp. 11114–11118, 2011, doi: 10.1166/JNN.2011.3978.

H. Zhang, Q. He, X. Zhu, D. Pan, X. Deng, and Z. Jiao, “Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties,” CrystEngComm, vol. 14, no. 9, pp. 3169–3176, Apr. 2012, doi: 10.1039/C2CE06558D.

L. Yu, L. Zhang, H. Song, X. Jiang, and Y. Lv, “Hierarchical SnO2 architectures: controllable growth on graphene by atmospheric pressure chemical vapour deposition and application in cataluminescence gas sensor,” CrystEngComm, vol. 16, no. 16, pp. 3331–3340, Mar. 2014, doi: 10.1039/C3CE42538J.

H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse, and X. Yao, “Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment,” Appl. Phys. Lett., vol. 87, no. 16, pp. 1–3, Oct. 2005, doi: 10.1063/1.2106006/910140.

J. Pan et al., “SnO2-TiO2 Core-shell nanowire structures: Investigations on solid state reactivity and photocatalytic behavior,” J. Phys. Chem. C, vol. 115, no. 35, pp. 17265–17269, Sep. 2011, doi: 10.1021/JP201901B/ASSET/IMAGES/MEDIUM/JP-2011-01901B_0009.GIF.

A. K. Dauletbekova, A. Y. Alzhanova, A. T. Akilbekov, A. A. Mashentseva, M. V. Zdorovets, and K. N. Balabekov, “Synthesis of Si/SiO2/ZnO nanoporous materials using chemical and electrochemical deposition techniques,” AIP Conf. Proc., vol. 1767, no. 1, Sep. 2016, doi: 10.1063/1.4962589/755185.

A. Dauletbekova et al., “Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals,” Cryst. 2022, Vol. 12, Page 817, vol. 12, no. 6, p. 817, Jun. 2022, doi: 10.3390/CRYST12060817.

J. Haines and J. Léger, “X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure:ffRelationships between structure types and implications for other rutile-type dioxides,” Phys. Rev. B, vol. 55, no. 17, p. 11144, May 1997, doi: 10.1103/PhysRevB.55.11144.

S. R. Shieh, A. Kubo, T. S. Duffy, V. B. Prakapenka, and G. Shen, “High-pressure phases in SnO2 to 117 GPa,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 73, no. 1, p. 014105, Jan. 2006, doi: 10.1103/PHYSREVB.73.014105/FIGURES/6/THUMBNAIL.

L. Gracia, A. Beltrán, and J. Andrés, “Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study,” J. Phys. Chem. B, vol. 111, no. 23, pp. 6479–6485, Jun. 2007, doi: 10.1021/JP067443V.

B. Wang and P. Xu, “Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods,” Chinese Phys. B, vol. 18, no. 1, p. 324, Jan. 2009, doi: 10.1088/1674-1056/18/1/053.

E. J. H. Lee, C. Ribeiro, T. R. Giraldi, E. Longo, E. R. Leite, and J. A. Varela, “Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay,” Appl. Phys. Lett., vol. 84, no. 10, pp. 1745–1747, Mar. 2004, doi: 10.1063/1.1655693.

S. Munnix and M. Schmeits, “Electronic structure of tin dioxide surfaces,” Phys. Rev. B, vol. 27, no. 12, p. 7624, Jun. 1983, doi: 10.1103/PhysRevB.27.7624.

N. Chiodini, A. Paleari, D. Dimartino, and G. Spinolo, “SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system,” Appl. Phys. Lett., vol. 81, no. 9, pp. 1702–1704, Aug. 2002, doi: 10.1063/1.1503154.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, no. 10, pp. 7983–7990, May 1996, doi: 10.1063/1.362349.

Y. Liu, Q. Yang, and C. Xu, “Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism,” J. Appl. Phys., vol. 104, no. 6, Sep. 2008, doi: 10.1063/1.2980326/343684.

K. G. Godinho, A. Walsh, and G. W. Watson, “Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2,” J. Phys. Chem. C, vol. 113, no. 1, pp. 439–448, Jan. 2008, doi: 10.1021/JP807753T.

Y. C. Her, J. Y. Wu, Y. R. Lin, and S. Y. Tsai, “Low-temperature growth and blue luminescence of SnO2 nanoblades,” Appl. Phys. Lett., vol. 89, no. 4, Jul. 2006, doi: 10.1063/1.2235925/986618.

S. Rani, S. C. Roy, N. Karar, and M. C. Bhatnagar, “Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films,” Solid State Commun., vol. 141, no. 4, pp. 214–218, Jan. 2007, doi: 10.1016/J.SSC.2006.10.036.

M. Bhatnagar, V. Kaushik, A. Kaushal, M. Singh, and B. R. Mehta, “Structural and photoluminescence properties of tin oxide and tin oxide: C core-shell and alloy nanoparticles synthesised using gas phase technique,” AIP Adv., vol. 6, no. 9, p. 95321, Sep. 2016, doi: 10.1063/1.4964313/884807.

J. Duan et al., “Multiform structures of SnO2 nanobelts,” Nanotechnology, vol. 18, no. 5, p. 055607, Jan. 2007, doi: 10.1088/0957-4484/18/5/055607.

L. Zhang, S. Ge, Y. Zuo, B. Zhang, and L. Xi, “Influence of oxygen flow rate on the morphology and magnetism of SnO 2 nanostructures,” J. Phys. Chem. C, vol. 114, no. 17, pp. 7541–7547, May 2010, doi: 10.1021/JP9065604/ASSET/IMAGES/MEDIUM/JP-2009-065604_0007.GIF.

J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons,” Adv. Funct. Mater., vol. 13, no. 6, pp. 493–496, Jun. 2003, doi: 10.1002/ADFM.200304327.

B. Cheng, J. M. Russell, W. Shi, L. Zhang, and E. T. Samulski, “Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods,” J. Am. Chem. Soc., vol. 126, no. 19, pp. 5972–5973, May 2004, doi: 10.1021/JA0493244/SUPPL_FILE/JA0493244SI20040402_033424.PDF.

Downloads

Published

2025-03-18

How to Cite

Junisbekova, D., Baimukhanov, Z., & Dauletbekova, A. (2025). Synthesis and research of optical and electrical properties of tin dioxide nanoprolocs in the SiO2/Si track template. Technobius Physics, 3(1), 0026. https://doi.org/10.54355/tbusphys/3.1.2025.0026