Effect of ethanol on the structure and aggregation properties of C₆₀ fullerenes
DOI:
https://doi.org/10.54355/tbusphys/2.4.2024.0021Keywords:
fullerenes, ethanol, atomic force microscope, aggregation, molecular interactionsAbstract
This study investigated the effect of ethanol on the structure and aggregation properties of C₆₀ fullerenes using an atomic force microscope. The fullerenes were dissolved in ethanol with different concentrations (0%, 10%, 25%, 50%, 100%) and deposited on silicon substrate for further analysis. The results showed that the size of molecular aggregates of fullerenes increased significantly with increasing ethanol concentration, starting from 15-20 nm in the absence of ethanol and reaching 80-100 nm at 100% ethanol. At the same time, the structure of the aggregates became more friable, indicating the solvent effect of ethanol. The interaction force measurements showed that the adhesion force of fullerenes to the substrate decreased with increasing ethanol concentration, indicating a weakening of adhesion and molecular interactions. These data confirm the significant effect of ethanol on the physicochemical properties of fullerenes and can be used to develop nanomaterials with variable structural characteristics.
Downloads
Metrics
References
S. V. Lubenets, L. S. Fomenko, V. D. Natsik, and A. V. Rusakova, “Low-temperature mechanical properties of fullerites: Structure, elasticity, plasticity, strength (Review Article),” Fiz. Nizk. Temp., vol. 45, no. 1, pp. 3–45, Jan. 2019.
A. Kauser, U. Sheikh, R. Pincak, and M. Pudlak, “Prediction of Buckyballs’ physical properties using Sombor index,” Int. J. Geom. Methods Mod. Phys., doi: 10.1142/S0219887824502682.
E. T. Hoke et al., “Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V,” Adv. Energy Mater., vol. 3, no. 2, pp. 220–230, Feb. 2013, doi: 10.1002/aenm.201200474.
K. T. Lam, Y. J. Hsiao, L. W. Ji, T. H. Fang, W. S. Shih, and J. N. Lin, “Characteristics of polymer-fullerene solar cells with ZnS nanoparticles,” Int. J. Electrochem. Sci., vol. 10, no. 5, pp. 3914–3922, Jan. 2014, doi: 10.1016/s1452-3981(23)06590-2.
R. Kacimi et al., “Quantum chemical study of symmetricalnon-fullerene acceptor chromophores for organic photovoltaics,” Comput. Theor. Chem., vol. 1233, p. 114475, Mar. 2024, doi: 10.1016/j.comptc.2024.114475.
A. Kausar, “Polymer/fullerene nanomaterials in optoelectronic devices: Photovoltaics, light-emitting diodes, and optical sensors,” in Polymer/Fullerene Nanocomposites: Design and Applications, Elsevier, 2023, pp. 153–174. doi: 10.1016/B978-0-323-99515-3.00006-7.
S. Thakral and R. Mehta, “Fullerenes: An introduction and overview of their biological properties,” Indian J. Pharm. Sci., vol. 68, no. 1, pp. 13–19, Jan. 2006, doi: 10.4103/0250-474X.22957.
H. J. Johnston, G. R. Hutchison, F. M. Christensen, K. Aschberger, and V. Stone, “The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity,” Toxicol. Sci., vol. 114, no. 2, pp. 162–182, Nov. 2009, doi: 10.1093/toxsci/kfp265.
Z. Liu, L. Guo, and J. Zhang, “Application progress of fullerene and its derivatives in medicine,” J. China Pharm. Univ., vol. 49, no. 2, pp. 136–146, Apr. 2018, doi: 10.11665/j.issn.1000-5048.20180202.
S. M. Andreev, E. N. Bashkatova, D. D. Purgina, N. N. Shershakova, and M. R. Haitov, “Fullerenes: Biomedical aspects,” Immunologiya, vol. 36, no. 1, pp. 57–61, Jan. 2015.
B. W. Gao, C. Gao, W. X. Que, and W. Wei, “Recent development of polymer/fullerene photovoltaic cells,” Wuli Xuebao/Acta Phys. Sin., vol. 61, no. 19, p. 194213, Oct. 2012, doi: 10.7498/aps.61.194213.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Hakan Ozbay
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.