Investigation of the mechanical equivalent of heat using aluminum and brass cylinders

Authors

DOI:

https://doi.org/10.54355/tbusphys/2.3.2024.0019

Keywords:

mechanical equivalent of heat, thermodynamics, energy transformation, aluminum, brass, renewable energy

Abstract

This study explores the mechanical equivalent of heat through controlled experiments using aluminum and brass cylinders. By mechanically rotating these cylinders against a friction band, the conversion of mechanical energy into heat is quantified, demonstrating a fundamental thermodynamic process. The experiment is designed to calculate the specific thermal capacities of the metals and evaluate the efficiency of energy transformation. Results validate the concept that mechanical energy, when converted through friction, becomes thermal energy—affirming the principles outlined in the conservation of energy. This work not only reinforces classical thermodynamics but also enhances our understanding of material properties under thermal stress, offering insights applicable to industrial applications and renewable energy technology. The findings underscore the practical implications of energy transformations in material science and engineering, contributing to the development of more efficient thermal management systems in various technological fields.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Zhaniya Yesimova, Department of Physics and Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Master Student

Aigerim Makazhanova, Al-Farabi Kazakh National University, Department of Physics and Technology, Almaty, Kazakhstan

MS, Academic Associate

References

F. Erdoǧdu, “A review on simultaneous determination of thermal diffusivity and heat transfer coefficient,” J. Food Eng., vol. 86, no. 3, pp. 453–459, Jun. 2008, doi: 10.1016/j.jfoodeng.2007.10.019. DOI: https://doi.org/10.1016/j.jfoodeng.2007.10.019

P. G. Kosky, D. H. Maylotte, and J. P. Gallo, “Angstrom methods applied to simultaneous measurements of thermal diffusivity and heat transfer coefficients: Part 1, theory,” Int. Commun. Heat Mass Transf., vol. 26, no. 8, pp. 1051–1059, Nov. 1999, doi: 10.1016/S0735-1933(99)00096-2. DOI: https://doi.org/10.1016/S0735-1933(99)00096-2

A. Rudajevová, “Thermal diffusivity of plasma sprayed alumina coatings,” Mater. Res. Bull., vol. 26, no. 12, pp. 1363–1369, Dec. 1991, doi: 10.1016/0025-5408(91)90153-D. DOI: https://doi.org/10.1016/0025-5408(91)90153-D

F. Scarpa, R. Bartolini, and G. Milano, “State space (Kalman) estimator in the reconstruction of thermal diffusivity from noisy temperature measurements,” High Temp. - High Press., vol. 23, no. 6, pp. 633–642, Jan. 1991.

E. Litovsky, V. Issoupov, J. I. Kleiman, and N. Menn, “Space environment impact on the apparent thermal conductivity and diffusivity of spacecraft materials,” Issue 616, no. 616, p. 2006.

S. Freund and S. Kabelac, “Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD,” Int. J. Heat Mass Transf., vol. 53, no. 19, pp. 3764–3781, Sep. 2010, doi: 10.1016/j.ijheatmasstransfer.2010.04.027. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.027

Y. Yu and X. Luo, “Identification of heat transfer coefficients of steel billet in continuous casting by weight least square and improved difference evolution method,” Appl. Therm. Eng., vol. 114, pp. 36–43, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.11.173. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.173

J. Bacenetti, “Heat and cold production for winemaking using pruning residues: Environmental impact assessment,” Vol. 252, vol. 252, Jan. 17608BC, doi: 10.1016/j.apenergy.2019.113464. DOI: https://doi.org/10.1016/j.apenergy.2019.113464

M. Madelatparvar, M. S. Hosseini, and C. Zhang, “Polyurea micro-/nano-capsule applications in construction industry: A review,” Nanotechnol. Rev., vol. 12, no. 1, p. 20220516, Jan. 2023, doi: 10.1515/ntrev-2022-0516. DOI: https://doi.org/10.1515/ntrev-2022-0516

E. W. McFarland, “Solar energy: Setting the economic bar from the top-down,” Energy Environ. Sci., vol. 7, no. 3, pp. 846–854, Mar. 2014, doi: 10.1039/c3ee43714k. DOI: https://doi.org/10.1039/C3EE43714K

P. Kandlakunta et al., “Solar Photovoltaic Devices as Radiation Sensors for Post-detonation Nuclear Forensics,” 2020 , p. 2020, doi: 10.1109/NSS/MIC42677.2020.9507766. DOI: https://doi.org/10.1109/NSS/MIC42677.2020.9507766

P. P. Rao, “System identification and prediction in radiative heat transfer using dynamic mode decomposition,” Int. J. Heat Technol., vol. 39, no. 3, pp. 688–700, Jun. 2021, doi: 10.18280/ijht.390303. DOI: https://doi.org/10.18280/ijht.390303

T. M. Scheuermann et al., “An object-oriented library for heat transfer modelling and simulation in open cell foams,” Vol. 53, Issue 2, Pages 7575 - 7580, vol. 53, no. 2, p. Berlin, doi: 10.1016/j.ifacol.2020.12.1354. DOI: https://doi.org/10.1016/j.ifacol.2020.12.1354

Downloads

Published

2024-09-30

How to Cite

Yesimova, Z., & Makazhanova, A. (2024). Investigation of the mechanical equivalent of heat using aluminum and brass cylinders. Technobius Physics, 2(3), 0019. https://doi.org/10.54355/tbusphys/2.3.2024.0019