Determining magnetic field strength as a function of current in Helmholtz coils
DOI:
https://doi.org/10.54355/tbusphys/2.3.2024.0016Keywords:
Helmholtz coils, magnetic field strength, current variation, digital teslameter, calibration factorAbstract
This experiment looks into the relationship between the strength of the magnetic field produced by two Helmholtz coils and the current passing through them. A 100 Ohm, 1.8 A rheostat is used to link the Helmholtz coils to a variable power source (0-20V, 0-5A) while keeping them firmly fastened. The magnetic field at the coils' center is carefully measured by a digital Teslameter equipped with a Hall probe while the current is gradually changed. A digital multimeter with several working modes makes data collecting easier and guarantees accurate results. It is possible to empirically validate theoretical predictions by charting magnetic field strength against current. Strict safety procedures, such as temperature monitoring and safe electrical connections, are followed during the experiment. To guarantee alignment and stability, Helmholtz coils are fastened to a sturdy core assembly utilizing supports, clamps, and rods. The calibration factor and the horizontal flux density as a function of coil current are calculated as part of the setup. The measurement of the angle between the coil axis and the "north/south" direction is made possible by the maximum needle deflection at 4 A.
Downloads
Metrics
References
F. Donadini, M. Korte, and C. Constable, “Millennial variations of the geomagnetic field: From data recovery to field reconstruction,” Space Sci. Rev., vol. 155, no. 1–4, pp. 219–246, Aug. 2010, doi: 10.1007/S11214-010-9662-Y/METRICS. DOI: https://doi.org/10.1007/s11214-010-9662-y
M. Dumberry and C. C. Finlay, “Eastward and westward drift of the Earth’s magnetic field for the last three millennia,” Earth Planet. Sci. Lett., vol. 254, no. 1–2, pp. 146–157, Feb. 2007, doi: 10.1016/J.EPSL.2006.11.026. DOI: https://doi.org/10.1016/j.epsl.2006.11.026
M. Korte, C. Constable, F. Donadini, and R. Holme, “Reconstructing the Holocene geomagnetic field,” Earth Planet. Sci. Lett., vol. 312, no. 3–4, pp. 497–505, Dec. 2011, doi: 10.1016/J.EPSL.2011.10.031. DOI: https://doi.org/10.1016/j.epsl.2011.10.031
E. M. King and B. A. Buffett, “Flow speeds and length scales in geodynamo models: The role of viscosity,” Earth Planet. Sci. Lett., vol. 371–372, pp. 156–162, Jun. 2013, doi: 10.1016/J.EPSL.2013.04.001. DOI: https://doi.org/10.1016/j.epsl.2013.04.001
M. Kono and P. H. Roberts, “Definition of the Rayleigh number for geodynamo simulation,” Phys. Earth Planet. Inter., vol. 128, no. 1–4, pp. 13–24, Dec. 2001, doi: 10.1016/S0031-9201(01)00274-6. DOI: https://doi.org/10.1016/S0031-9201(01)00274-6
M. Schrinner, D. Schmitt, R. Cameron, and P. Hoyng, “Saturation and time dependence of geodynamo models,” Geophys. J. Int., vol. 182, no. 2, pp. 675–681, Aug. 2010, doi: 10.1111/J.1365-246X.2010.04650.X/2/M_182-2-675-EQ016.JPEG. DOI: https://doi.org/10.1111/j.1365-246X.2010.04650.x
M. D. Menu, L. Petitdemange, and S. Galtier, “Magnetic effects on fields morphologies and reversals in geodynamo simulations,” Phys. Earth Planet. Inter., vol. 307, Oct. 2020, doi: 10.1016/j.pepi.2020.106542. DOI: https://doi.org/10.1016/j.pepi.2020.106542
N. Olsen et al., “The Swarm satellite constellation application and research facility (SCARF) and Swarm data products,” Earth, Planets Sp., vol. 65, no. 11, pp. 1189–1200, Nov. 2013, doi: 10.5047/EPS.2013.07.001/TABLES/4.
C. C. Finlay, N. Olsen, and L. Tøffner-Clausen, “DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model International Geomagnetic Reference Field - The Twelfth generation,” Earth, Planets Sp., vol. 67, no. 1, pp. 1–17, Dec. 2015, doi: 10.1186/S40623-015-0274-3/FIGURES/11. DOI: https://doi.org/10.1186/s40623-015-0274-3
J. Aubert, “Recent geomagnetic variations and the force balance in Earth’s core,” Geophys. J. Int., vol. 221, no. 1, pp. 378–393, Apr. 2020, doi: 10.1093/GJI/GGAA007. DOI: https://doi.org/10.1093/gji/ggaa007
C. J. Davies, R. K. Bono, D. G. Meduri, J. Aubert, S. Greenwood, and A. J. Biggin, “Dynamo constraints on the long-term evolution of Earth’s magnetic field strength,” Geophys. J. Int., vol. 228, no. 1, pp. 316–336, Sep. 2021, doi: 10.1093/GJI/GGAB342. DOI: https://doi.org/10.1093/gji/ggab342
G. Hulot et al., “Swarm’s absolute magnetometer experimental vector mode, an innovative capability for space magnetometry,” Geophys. Res. Lett., vol. 42, no. 5, pp. 1352–1359, Mar. 2015, doi: 10.1002/2014GL062700. DOI: https://doi.org/10.1002/2014GL062700
R. Tozzi, M. Pezzopane, P. De Michelis, and M. Piersanti, “Applying a curl-B technique to Swarm vector data to estimate nighttime F region current intensities,” Geophys. Res. Lett., vol. 42, no. 15, pp. 6162–6169, Aug. 2015, doi: 10.1002/2015GL064841. DOI: https://doi.org/10.1002/2015GL064841
S. Maus, “Mysterious misalignments between geomagnetic and stellar reference frames seen in CHAMP and Swarm satellite measurements,” Geophys. J. Int., vol. 203, no. 3, pp. 1873–1876, Dec. 2015, doi: 10.1093/GJI/GGV409. DOI: https://doi.org/10.1093/gji/ggv409
Q. Li et al., “Performance Analysis of GPS/BDS Broadcast Ionospheric Models in Standard Point Positioning during 2021 Strong Geomagnetic Storms,” Remote Sens. 2022, Vol. 14, Page 4424, vol. 14, no. 17, p. 4424, Sep. 2022, doi: 10.3390/RS14174424. DOI: https://doi.org/10.3390/rs14174424
X. Li, H. Cai, D. Li, C. Geng, L. Chen, and J. Xu, “Analysis of the influence of geomagnetic storms on the ionospheric model of beidou/GPS system,” Lect. Notes Electr. Eng., vol. 388, pp. 503–510, 2016, doi: 10.1007/978-981-10-0934-1_43/FIGURES/4. DOI: https://doi.org/10.1007/978-981-10-0934-1_43
Downloads
Published
How to Cite
License
Copyright (c) 2024 Nazerke Erzhanova
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.