Enhancing dry mix mortar strength with natural fillers and polymers

Authors

  • Khrystyna Moskalova Department of Processes and Apparatuses in the Technology of Building Materials, Odesa State Academy of Civil Engineering and Architecture, 4 Didrihsona St., 65029 Odesa, Ukraine https://orcid.org/0000-0002-2543-9154
  • Aleksej Aniskin Department of Civil Engineering, University North, 104. brigade 3, 42000 Varaždin, Croatia https://orcid.org/0000-0002-9941-1947
  • Matija Orešković Department of Civil Engineering, University North, 104. brigade 3, 42000 Varaždin, Croatia https://orcid.org/0000-0001-5684-0496
  • Željka Kovač Department of Civil Engineering, University North, 104. brigade 3, 42000 Varaždin, Croatia

DOI:

https://doi.org/10.54355/tbus/3.2.2023.0039

Keywords:

dry mix mortar, cellulose ether, dispersible polymer, crack resistance, compression strength

Abstract

Dry mix mortars are becoming more and more popular in the world’s building materials market. Therefore, the issue of increasing the technological and mechanical properties of stucco mixes is relevant. The aim of the paper is modification of lightweight dry stucco mixes with fine limestone and perlite as well as with hydroxyethyl methyl cellulose and dispersible polymer. In order to investigate the different mixes, an 18-point experiment was designed. Density, compressive strengths and crack resistance of dry plaster mixes were studied using requirements of standard.  Mathematical models were obtained for the compositions as a result of processing the experimental data. The regularities of the fillers’ and additives’ influence on the properties of the mixes were established, depending on their amount and combination. It was observed that methyl hydroxyethyl cellulose improves the crack resistance and compression strength, and contributes to a slight decrease in density. The crack resistance of plaster mortars changes more than 1.5 times, the most crack-resistant compositions have an average amount of porous fillers.

References

Thermal enhanced cement-lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers / C. Guardia, G. Barluenga, I. Palomar, G. Diarce // Construction and Building Materials. — 2019. — Vol. 221. — P. 586–594. https://doi.org/10.1016/j.conbuildmat.2019.06.098 DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.098

Comparative study of effects of natural organic additives and cellulose ether on properties of lime-clay mortars / H.-Y. Hwang, Y.-H. Kwon, S.-G. Hong, S.-H. Kang // Journal of Building Engineering. — 2022. — Vol. 48. — P. 103972. https://doi.org/10.1016/j.jobe.2021.103972 DOI: https://doi.org/10.1016/j.jobe.2021.103972

Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture / M. Sonebi, M. Lachemi, K.M.A. Hossain // Construction and Building Materials. — 2013. — Vol. 38. — P. 126–138. https://doi.org/10.1016/j.conbuildmat.2012.07.102 DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.102

Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste / M. Lachemi, K.M.A. Hossain, V. Lambros, P.-C. Nkinamubanzi, N. Bouzoubaâ // Cement and Concrete Research. — 2004. — Vol. 34, No. 2. — P. 185–193. https://doi.org/10.1016/S0008-8846(03)00233-3 DOI: https://doi.org/10.1016/S0008-8846(03)00233-3

Improving the freeze-thaw resistance of mortar by a combined use of superabsorbent polymer and air entraining agent / Y. Xu, Q. Yuan, X. Dai, G. Xiang // Journal of Building Engineering. — 2022. — Vol. 52. — P. 104471. https://doi.org/10.1016/j.jobe.2022.104471 DOI: https://doi.org/10.1016/j.jobe.2022.104471

Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar / C. Shi, X. Zou, P. Wang // Construction and Building Materials. — 2020. — Vol. 241. — P. 118035. https://doi.org/10.1016/j.conbuildmat.2020.118035 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118035

Influence of defoaming agents on mechanical performances and pore characteristics of Portland cement paste/mortar in presence of EVA dispersible powder / H. Li, Z. Xue, H. Liang, Y. Guo, G. Liang, D. Ni, Z. Yang // Journal of Building Engineering. — 2021. — Vol. 41. — P. 102780. https://doi.org/10.1016/j.jobe.2021.102780 DOI: https://doi.org/10.1016/j.jobe.2021.102780

Experimental study on mortar with the addition of hydrophobic silicone oil for water absorption, strength, and shrinkage / Y. Luan, S. Asamoto // Construction and Building Materials. — 2023. — Vol. 367. — P. 130323. https://doi.org/10.1016/j.conbuildmat.2023.130323 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130323

Admixtures potential role on the improvement of the freeze-thaw resistance of lime mortars / B. Silva, A.P. Ferreira Pinto, A. Gomes, A. Candeias // Journal of Building Engineering. — 2021. — Vol. 35. — P. 101977. https://doi.org/10.1016/j.jobe.2020.101977 DOI: https://doi.org/10.1016/j.jobe.2020.101977

Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency / N. Soares, J.J. Costa, A.R. Gaspar, P. Santos // Energy and Buildings. — 2013. — Vol. 59. — P. 82–103. https://doi.org/10.1016/j.enbuild.2012.12.042 DOI: https://doi.org/10.1016/j.enbuild.2012.12.042

Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls / I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, M. Founti // Building and Environment. — 2013. — Vol. 61. — P. 93–103. https://doi.org/10.1016/j.buildenv.2012.12.007 DOI: https://doi.org/10.1016/j.buildenv.2012.12.007

A Hedera green façade – Energy performance and saving under different maritime-temperate, winter weather conditions / R.W.F. Cameron, J. Taylor, M. Emmett // Building and Environment. — 2015. — Vol. 92. — P. 111–121. https://doi.org/10.1016/j.buildenv.2015.04.011 DOI: https://doi.org/10.1016/j.buildenv.2015.04.011

Energy and Cost Evaluation of Different HVAC Systems in an Office Building // Tehnicki vjesnik - Technical Gazette. — 2022. — Vol. 29, No. 3. https://doi.org/10.17559/TV-20210306185845 DOI: https://doi.org/10.17559/TV-20210306185845

Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden / A.K. Petersen, B. Solberg // Forest Policy and Economics. — 2005. — Vol. 7, No. 3. — P. 249–259. https://doi.org/10.1016/S1389-9341(03)00063-7 DOI: https://doi.org/10.1016/S1389-9341(03)00063-7

Life Cycle Inventory of Portland Cement Concrete / L.M. Medgar, A.N. Michael, G.V. Martha. — Illinois: PCA, 2007.

Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential / I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón // Building and Environment. — 2011. — Vol. 46, No. 5. — P. 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002 DOI: https://doi.org/10.1016/j.buildenv.2010.12.002

2020 GLOBAL STATUS REPORT FOR BUILDINGS AND CONSTRUCTION: Towards a zero-emissions, efficient and resilient buildings and construction sector / I. Hamilton, H. Kennard, O. Rapf, J. Kockat, S. Zuhaib. — Nairobi: Global Alliance for Buildings and Construction, 2020.

Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management / Z. Fan, Y. Zhao, Y. Ding, Y. Shi, X. Liu, D. Jiang // Journal of Energy Storage. — 2022. — Vol. 55. — P. 105710. https://doi.org/10.1016/j.est.2022.105710 DOI: https://doi.org/10.1016/j.est.2022.105710

Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures / F. Koksal, O. Gencel, M. Kaya // Construction and Building Materials. — 2015. — Vol. 88. — P. 175–187. https://doi.org/10.1016/j.conbuildmat.2015.04.021 DOI: https://doi.org/10.1016/j.conbuildmat.2015.04.021

Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent / A. Schackow, C. Effting, M.V. Folgueras, S. Güths, G.A. Mendes // Construction and Building Materials. — 2014. — Vol. 57. — P. 190–197. https://doi.org/10.1016/j.conbuildmat.2014.02.009 DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.009

Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites / B. Xu, H. Ma, Z. Lu, Z. Li // Applied Energy. — 2015. — Vol. 160. — P. 358–367. https://doi.org/10.1016/j.apenergy.2015.09.069 DOI: https://doi.org/10.1016/j.apenergy.2015.09.069

Preparation of high closed porosity foamed ceramics from coal gangue waste for thermal insulation applications / X. Li, M. Pan, M. Tao, W. Liu, Z. Gao, C. Ma // Ceramics International. — 2022. — Vol. 48, No. 24. — P. 37055–37063. https://doi.org/10.1016/j.ceramint.2022.08.280 DOI: https://doi.org/10.1016/j.ceramint.2022.08.280

Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties / H. Binici // Construction and Building Materials. — 2007. — Vol. 21, No. 6. — P. 1191–1197. https://doi.org/10.1016/j.conbuildmat.2006.06.002 DOI: https://doi.org/10.1016/j.conbuildmat.2006.06.002

Effects of natural zeolite replacement on the properties of superhydrophobic mortar / S. Xu, Q. Wang, N. Wang, Q. Song, Y. Li // Construction and Building Materials. — 2022. — Vol. 348. — P. 128567. https://doi.org/10.1016/j.conbuildmat.2022.128567 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128567

Central composite design-based development of eco-efficient high-volume fly ash mortar / S. Du, X. Ge, Q. Zhao // Construction and Building Materials. — 2022. — Vol. 358. — P. 129411. https://doi.org/10.1016/j.conbuildmat.2022.129411 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129411

Effective utilization of textile industry waste-derived and heat-treated pumice powder in cement mortar / W. Adil, F. Ur Rahman, G. M.S Abdullah, B.A. Tayeh, A.M. Zeyad // Construction and Building Materials. — 2022. — Vol. 351. — P. 128966. https://doi.org/10.1016/j.conbuildmat.2022.128966 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128966

Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study / F. Rahman, W. Adil, M. Raheel, M. Saberian, J. Li, T. Maqsood // Journal of Building Engineering. — 2022. — Vol. 49. — P. 104037. https://doi.org/10.1016/j.jobe.2022.104037 DOI: https://doi.org/10.1016/j.jobe.2022.104037

EN 197-1:2011 - Cement - Part 1: Composition, specifications and conformity criteria for common cements [Electronic resource] // iTeh Standards. — [2011]. — Mode of access: https://standards.iteh.ai/catalog/standards/cen/64d327b1-d5ac-45e3-8b04-fafec9e0698e/en-197-1-2011 (accessed date: 16.10.2023).

EN 12904:1999 - Products used for treatment of water intended for human consumption - Sand and gravel [Electronic resource] // iTeh Standards. — [2005]. — Mode of access: https://standards.iteh.ai/catalog/standards/cen/2d70dd7a-e717-4ed8-98db-dd6ded7e0589/en-12904-1999 (accessed date: 16.10.2023).

Methylhydroxyethyl cellulose (MHEC) [Electronic resource] // SE Tylose. — [2023]. — Mode of access: https://www.setylose.com/en/products/industrial/tylose-methylcellulose/tylose-mhec (accessed date: 15.05.2023).

VINNAPAS® 5043 N | Dispersible Polymer Powders | Wacker Chemie AG [Electronic resource] // WACKER Website. — [2023]. — Mode of access: https://www.wacker.com/h/en-si/dispersible-polymer-powders/vinnapas-5043-n/p/000010679 (accessed date: 15.05.2023).

Hostapur OSB [Electronic resource] / C.L. Basel // Clariant Ltd. — [2023]. — Mode of access: https://www.clariant.com/en/Solutions/Products/2013/12/09/18/28/Hostapur-OSB (accessed date: 15.05.2023).

Design and analysis of experiments / D.C. Montgomery. — Hoboken, NJ: Wiley, 2020. — 688 p.

Introduction to Multiobjective Optimization: Interactive Approaches / K. Miettinen, F. Ruiz, A.P. Wierzbicki // Multiobjective Optimization: Vol. 5252: Lecture Notes in Computer Science. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. — P. 27–57. https://doi.org/10.1007/978-3-540-88908-3_2 DOI: https://doi.org/10.1007/978-3-540-88908-3_2

DIN 18555-7:2019-04 - Testing of mortars with mineral binders - Part 7: Determination of the water retention value of fresh mortars by the filter plate method [Electronic resource] // Beuth Verlag. — [2019]. — Mode of access: https://www.beuth.de/de/norm/din-18555-7/298806787 (accessed date: 15.05.2023).

SIST EN 1015-11:2020 - Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar [Electronic resource] // iTeh Standards. — [2023]. — Mode of access: https://standards.iteh.ai/catalog/standards/sist/a10b9a8b-330d-451a-8780-8591b37dce95/sist-en-1015-11-2020 (accessed date: 15.05.2023).

Downloads

Published

2023-06-30

How to Cite

Moskalova, K., Aniskin, A., Orešković, M., & Kovač, Željka . (2023). Enhancing dry mix mortar strength with natural fillers and polymers. Technobius, 3(2), 0039. https://doi.org/10.54355/tbus/3.2.2023.0039

Issue

Section

Articles