Rehabilitation of lengthy sewer pipelines by polymer-composite CIPP

Authors

DOI:

https://doi.org/10.54355/tbus/5.1.2025.0072

Keywords:

sewerage, rehabilitation, CIPP, ultraviolet curing, CCTV

Abstract

This study examines the feasibility of Cured-in-Place Pipe (CIPP) technology for trenchless rehabilitation of aging sewer pipelines, addressing the severe deterioration of Karaganda’s sewer networks. A 3 km section was inspected using CCTV, ultrasonic, and shock-pulse methods to assess pipeline conditions, revealing structural defects with depreciation levels reaching 70-100%. The CIPP method was successfully applied to restore the integrity of 2.6 km pipelines while minimizing excavation, stabilizing the average flow rates and velocity of 0.8-1.2 m pipelines at 710 liter/s and 1.2 m/s, respectively. Hydraulic analysis confirmed that rehabilitated pipelines maintained sufficient flow velocity for self-cleaning and increased capacity, reducing blockage risks. The findings demonstrate that CIPP is a sustainable alternative to pipeline replacement, offering a viable solution for long-length sewer rehabilitation and supporting strategic urban infrastructure renewal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yerbol Zhumagaliyev , Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Master Student

Assel Mukhamejanova, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD, Acting Associate Professor

Akmaral Yeleussinova , Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Candidate of Technical Sciences, Head of the Department

Dana Bakirova, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Senior Lecturer

Aizhan Baketova , Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD Student

Alizhan Kazkeyev, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD Student

Tymarkul Muzdybayeva, Department of Civil Engineering, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD, Senior Lecturer

References

C. S. S. Ferreira, A. C. Duarte, M. Kasanin-Grubin, M. Kapovic-Solomun, and Z. Kalantari, “Hydrological challenges in urban areas,” in Advances in Chemical Pollution, Environmental Management and Protection, vol. 8, no. 1, 2022, pp. 47–67. doi: 10.1016/bs.apmp.2022.09.001. DOI: https://doi.org/10.1016/bs.apmp.2022.09.001

W. Sohn, J. H. Kim, M. H. Li, R. D. Brown, and F. H. Jaber, “How does increasing impervious surfaces affect urban flooding in response to climate variability?,” Ecol Indic, vol. 118, p. 106774, 2020, doi: 10.1016/j.ecolind.2020.106774. DOI: https://doi.org/10.1016/j.ecolind.2020.106774

C. N. Damvergis, “Sewer systems: Failures and rehabilitation,” Water Utility Journal, vol. 8, pp. 17–24, 2014.

N. A. Ibragimova, O. V. Esyrev, Z. R. Zhantuarova, and Z. M. Biyasheva, “Comprehensive Assessment of Waste Water Pollution Rate in Almaty City, Kazakhstan,” International Journal of Environmental Science and Development, vol. 7, no. 6, pp. 420–424, 2016, doi: 10.7763/IJESD.2016.V7.812. DOI: https://doi.org/10.7763/IJESD.2016.V7.812

M. S. Kalmakhanova, J. L. Diaz de Tuesta, A. Malakar, H. T. Gomes, and D. D. Snow, “Wastewater Treatment in Central Asia: Treatment Alternatives for Safe Water Reuse,” 2023. doi: 10.3390/su152014949. DOI: https://doi.org/10.3390/su152014949

S. V. Zharov, S. S. Zharova, and A. A. Fesenko, “Istoriya razvitiya, sovremennoe sostoyanie i dalnejshaya ekspluataciya vodoprovodno-kanalizacionnogo hozyajstva g. Karagandy,” Trudy Universiteta, vol. 23, no. 2, pp. 62–64, 2006.

L. Yu, N. Li, X. Liu, Q. Yang, and J. Long, “Influence of flushing pressure, flushing frequency and flushing time on the service life of a labyrinth-channel emitter,” Biosyst Eng, vol. 172, pp. 154–164, Aug. 2018, doi: 10.1016/j.biosystemseng.2018.06.010. DOI: https://doi.org/10.1016/j.biosystemseng.2018.06.010

F. Moser, A. P.; Steven, “Unearth the Secrets of Designing and Building High-Quality Buried Piping Systems,” in Buried Pipe Design, 3rd ed., New York: McGraw Hill, 2008, p. 601.

D.-H. Koo and S. T. Ariaratnam, “Innovative method for assessment of underground sewer pipe condition,” Autom Constr, vol. 15, no. 4, pp. 479–488, Jul. 2006, doi: 10.1016/j.autcon.2005.06.007. DOI: https://doi.org/10.1016/j.autcon.2005.06.007

T. Chorazy et al., “Comparison of Trenchless and Excavation Technologies in the Restoration of a Sewage Network and Their Carbon Footprints,” Resources, vol. 13, no. 1, p. 12, Jan. 2024, doi: 10.3390/resources13010012. DOI: https://doi.org/10.3390/resources13010012

W. S. Chin and D. G. Lee, “Development of the trenchless rehabilitation process for underground pipes based on RTM,” Compos Struct, vol. 68, no. 3, pp. 267–283, May 2005, doi: 10.1016/j.compstruct.2004.03.019. DOI: https://doi.org/10.1016/j.compstruct.2004.03.019

F. A. Hoffstadt, “Cured-in-place composite pipe structures in infrastructure rehabilitation,” International SAMPE Symposium and Exhibition (Proceedings), vol. 45, p. I/, 2000.

V. Kaushal, M. Najafi, R. Serajiantehrani, M. Malek Mohammadi, and S. Shirkhanloo, “Construction Cost Comparison between Trenchless Cured-in-Place Pipe (CIPP) Renewal and Open-Cut Replacement for Sanitary Sewer Applications,” in Pipelines 2022, Reston, VA: American Society of Civil Engineers, Jul. 2022, pp. 171–177. doi: 10.1061/9780784484272.021. DOI: https://doi.org/10.1061/9780784484272.021

SP RK 1.04-101-2012 Survey and assessment of the technical status of buildings and constructions. 2012, p. 89.

J. Myrans, R. Everson, and Z. Kapelan, “Automated detection of fault types in CCTV sewer surveys,” Journal of Hydroinformatics, vol. 21, no. 1, pp. 153–163, Jan. 2019, doi: 10.2166/hydro.2018.073. DOI: https://doi.org/10.2166/hydro.2018.073

GOST 17624-2012 Concrete. Ultrasonic method of strength determination. 2012.

GOST 22690-2015 Concretes. Determination of strength by mechanical methods of nondestructive testing. 2015.

SN RK 4.01-04-2010 Instrukciya po vosstanovleniyu vodoprovodnyh i kanalizacionnyh setej metodom ustrojstva sploshnyh polimernyh rukavov. 2010.

BKP, “Berolina-Liner: Customised GRP tube liners with unique expansion behaviour.” Accessed: Feb. 21, 2025. [Online]. Available: https://bkp-berolina.de/en/berolina-liner-system/berolina-liner/

J. Majerová, J. Hodul, and R. Drochytka, “Properties and Structure of UV Light Cured CIPP Composites,” Key Eng Mater, vol. 898, pp. 67–72, Aug. 2021, doi: 10.4028/www.scientific.net/KEM.898.67. DOI: https://doi.org/10.4028/www.scientific.net/KEM.898.67

A. A. Lukinyh and N. A. Lukinyh, Tablicy dlya gidravlicheskogo raschyota kanalizacionnyh setej i dyukerov po formule akad. NN Pavlovskogo, 4th ed. Moscow: Stroyizdat, 1974.

GOST 6482-2011 Reinforced concrete nonpressure pipes. Specifications. 2011.

Downloads

Published

2025-03-02

How to Cite

Zhumagaliyev , Y., Mukhamejanova, A., Yeleussinova , A. ., Bakirova, D. ., Baketova , A. ., Kazkeyev, A., & Muzdybayeva, T. (2025). Rehabilitation of lengthy sewer pipelines by polymer-composite CIPP. Technobius, 5(1), 0072. https://doi.org/10.54355/tbus/5.1.2025.0072

Issue

Section

Articles

Categories

Most read articles by the same author(s)

1 2 > >>