Effect of glass waste on ceramics and concrete production
DOI:
https://doi.org/10.54355/tbus/5.1.2025.0075Keywords:
production waste, concretes, ceramics, recycling, physical and mechanical propertiesAbstract
The article is devoted to the study of using glass waste for ceramics and concretes production. The results of the spectral analysis of glass composition are presented, and phase changes and their impact on the microstructure and strength properties of ceramics and concrete are studied. Scanning electron microscopy and energy dispersive X-ray spectroscopy of the final material are discussed. As a result, it was revealed that after 28 days, concrete with added glass powder delayed the strength rise, but by day 112, the strength had considerably grown to 76.36 MPa. This results from pozzolanic reactions, where calcium hydroxide and glass combine to generate more hydration products that boost strength. Glass-based ceramic shows 13.20 MPa compressive strength, which satisfies construction material criteria, and was achieved by adding glass waste at a level of 10% of the clay mass. In addition to lowering the demand for natural mineral resources, the use of glass in ceramic blends promotes sustainable development and lessens the environmental load. Both the ceramic and concrete samples had a high content of SiO2 and Al2O3 oxides. These are the main components that provide the material with high mechanical strength and chemical resistance. In the Spectral analysis of glass, in all the graphs, we see a high tendency for silicon dioxide (silica). This is explained by the fact that SiO2 belongs to the group of glass-forming oxides, i.e., it is prone to the formation of supercooled melt-glass.
Downloads
Metrics
References
J. Pranckevičienė and I. Pundienė, “Effect of Mechanically Activated Nepheline-Syenite Additive on the Physical–Mechanical Properties and Frost Resistance of Ceramic Materials Composed of Illite Clay and Mineral Wool Waste,” Materials, vol. 16, no. 14, p. 4943, Jul. 2023, doi: 10.3390/ma16144943. DOI: https://doi.org/10.3390/ma16144943
K. Khonjo, Y. Toleuov, A. Azbergenova, and A. Urumbayeva, “Study of cement binders applicable for modified cast-in-place concrete,” Technobius, vol. 2, no. 3, p. 0022, Sep. 2022, doi: 10.54355/tbus/2.3.2022.0022. DOI: https://doi.org/10.54355/tbus/2.3.2022.0022
J. Plank, E. Sakai, C. W. Miao, C. Yu, and J. X. Hong, “Chemical admixtures — Chemistry, applications and their impact on concrete microstructure and durability,” Cem Concr Res, vol. 78, pp. 81–99, Dec. 2015, doi: 10.1016/j.cemconres.2015.05.016. DOI: https://doi.org/10.1016/j.cemconres.2015.05.016
М. V. Morozova, “The effect of temperature and humidity treatment on the strength set of fine-grained concrete with the addition of saponite-containing material,” Nanotechnologies in Construction A Scientific Internet-Journal, vol. 16, no. 3, pp. 227–234, Jun. 2024, doi: 10.15828/2075-8545-2024-16-3-227-234. DOI: https://doi.org/10.15828/2075-8545-2024-16-3-227-234
A. Teara, D. S. Ing, and V. W. Tam, “The use of waste materials for concrete production in construction applications,” IOP Conf Ser Mater Sci Eng, vol. 342, p. 012062, Apr. 2018, doi: 10.1088/1757-899X/342/1/012062. DOI: https://doi.org/10.1088/1757-899X/342/1/012062
M. L. Berndt, “Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate,” Constr Build Mater, vol. 23, no. 7, pp. 2606–2613, Jul. 2009, doi: 10.1016/j.conbuildmat.2009.02.011. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.011
I. Brás, P. C. Silva, R. M. S. F. Almeida, and M. E. Silva, “Recycling Wastes in Concrete Production: Performance and Eco-toxicity Assessment,” Waste Biomass Valorization, vol. 11, no. 3, pp. 1169–1180, Mar. 2020, doi: 10.1007/s12649-018-0382-y. DOI: https://doi.org/10.1007/s12649-018-0382-y
D. S. Smirnov, L. F. Mavliev, K. R. Khuziakhmetova, and I. R. Motygullin, “Effect of mineral additive based on ground blast furnace slag on the properties of concrete and concrete mixtures,” Известия Казанского государственного архитектурно-строительного университета, no. 4, pp. 61–69, 2022, doi: 10.52409/20731523_2022_4_61. DOI: https://doi.org/10.52409/20731523_2022_4_61
A. V. Shcherban, “Use of Crushed Concrete and Broken Glass in Secondary Concrete Production,” Young researcher of the Don, vol. 8, no. 6, pp. 42–48, 2023.
S. S. Dobrosmyslov et al., “High-Strength Building Material Based on a Glass Concrete Binder Obtained by Mechanical Activation,” Buildings, vol. 13, no. 8, p. 1992, Aug. 2023, doi: 10.3390/buildings13081992. DOI: https://doi.org/10.3390/buildings13081992
V. A. Solonina, “Possibilities of using industrial waste to produce building ceramics,” Architecture, Construction, Transport, no. 4(102), pp. 73–81, 2022, doi: 10.31660/2782-232X-2022-4-73-81. DOI: https://doi.org/10.31660/2782-232X-2022-4-73-81
N. K. Skripnikova, O. A. Kunts, and , A. B. Ulmasov, “Glass and metallurgical wastes in facing ceramics production,” Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. JOURNAL of Construction and Architecture, vol. 23, no. 6, pp. 165–171, Dec. 2021, doi: 10.31675/1607-1859-2021-23-6-165-171. DOI: https://doi.org/10.31675/1607-1859-2021-23-6-165-171
E. M. A. Hamid et al., “Recycling of urban glass waste in ceramic floor tiles toward sustainability,” Vietnam Journal of Chemistry, vol. 62, no. 3, pp. 316–327, Jun. 2024, doi: 10.1002/vjch.202300237. DOI: https://doi.org/10.1002/vjch.202300237
I. A. Zhenzhurist, V. G. Khozin, and R. K. Nizamov, “The Use of Industrial Waste of Glass Products in the Technology of Construction Ceramics,” Stroitel’nye Materialy, vol. 777, no. 12, pp. 34–36, 2019, doi: 10.31659/0585-430X-2019-777-12-34-36. DOI: https://doi.org/10.31659/0585-430X-2019-777-12-34-36
J. Pizoń, J. Gołaszewski, M. Alwaeli, and P. Szwan, “Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste,” Materials, vol. 13, no. 6, p. 1448, Mar. 2020, doi: 10.3390/ma13061448. DOI: https://doi.org/10.3390/ma13061448
V. A. Solonina and M. D. Butakova, “Producing ceramic wall material using industrial waste,” IOP Conf Ser Earth Environ Sci, vol. 1061, no. 1, p. 012048, Jul. 2022, doi: 10.1088/1755-1315/1061/1/012048. DOI: https://doi.org/10.1088/1755-1315/1061/1/012048
D. R. Damdinova, N. N. Anchiloev, and V. E. Pavlov, “Foam Glasses of Cullet – Clay – Sodium Hydroxide System: Compositions, Structures and Properties,” Building materials, no. 8, pp. 38–40, 2014.
T. K. Pavlushkina and Kisilenko N.G., “Using of the glass cut in the manufacture of building materials,” Glass and Ceramics, vol. 84, no. 5, pp. 27–34, 2011. DOI: https://doi.org/10.1007/s10717-011-9346-4
N. F. Zhernova, E. A. Doroganov, F. E. Zhernova, and I. N. Stepina, “Issledovanie materialov, poluchennyh spekaniem v sisteme «Glina - stekloboj»,” Bulletin of Belgorod State Technological University named after. V. G. Shukhov, no. 1, pp. 20–23, 2013.
I. A. Levitskii and A. I. Poznyak, “Thermophysical Characteristics of Furnace Tiles Obtained Using Galvanic Production Wastes,” Glass and Ceramics, vol. 72, no. 3–4, pp. 130–134, Jul. 2015, doi: 10.1007/s10717-015-9740-4. DOI: https://doi.org/10.1007/s10717-015-9740-4
M. A. Sukharnikova, E. S. Pikalov, O. G. Selivanov, É. P. Sysoev, and V. Yu. Chukhlanov, “Development of a Batch Composition for the Production of Construction Ceramic Based on Raw Material from Vladimir Oblast: Clays and Galvanic Sludge,” Glass and Ceramics, vol. 73, no. 3–4, pp. 100–102, Jul. 2016, doi: 10.1007/s10717-016-9834-7. DOI: https://doi.org/10.1007/s10717-016-9834-7
V. Mymrin et al., “Red clay application in the utilization of paper production sludge and scrap glass to fabricate ceramic materials,” Appl Clay Sci, vol. 107, pp. 28–35, Apr. 2015, doi: 10.1016/j.clay.2015.01.031. DOI: https://doi.org/10.1016/j.clay.2015.01.031
A. I. Fomenko, Kaptushina A.G., and Gryzlov V.S., “Expansion of raw material resources base for construction ceramics,” Construction Materials, no. 12, pp. 25–27, 2015.
L. Pérez-Villarejo, F. A. Corpas-Iglesias, S. Martínez-Martínez, R. Artiaga, and J. Pascual-Cosp, “Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry,” Constr Build Mater, vol. 35, pp. 656–665, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.133. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.133
P. Santos, C. Martins, and E. Júlio, “Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge,” Constr Build Mater, vol. 101, pp. 227–238, Dec. 2015, doi: 10.1016/j.conbuildmat.2015.10.058. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.058
D. V. Makarov, O. V. Suvorova, and V. A. Masloboev, Prospects of processing the mining and mineral processing waste in Murmansk Region into ceramic building materials. Apatity: FRC KSC RAS, 2019. doi: 10.25702/KSC.978-5-91137-403-7.
GOST 530-2012 Ceramic brick and stone. General technical conditions. 2012.
G. Ascensão, M. P. Seabra, J. B. Aguiar, and J. A. Labrincha, “Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability,” J Clean Prod, vol. 148, pp. 23–30, Apr. 2017, doi: 10.1016/j.jclepro.2017.01.150. DOI: https://doi.org/10.1016/j.jclepro.2017.01.150
H. Darweesh, “Recycling of Glass Waste in Ceramics-Part II: Microstructure of Ceramic Products using XRD, DTA and SEM Techniques,” Research & Development in Material Science, vol. 13, no. 4, May 2020, doi: 10.31031/RDMS.2020.13.000817. DOI: https://doi.org/10.31031/RDMS.2020.13.000817
GOST 27006-2019 Concrete. Rules for selection of composition. 2019.
C. Schlienkamp, “Heidelberg Cement AG,” Die Aktiengesellschaft, vol. 66, no. 18, pp. r271–r272, Sep. 2021, doi: 10.9785/ag-2021-661827. DOI: https://doi.org/10.9785/ag-2021-661827
ESI, “XRF spectrometer EDX9000B detects the content of residual elements Cu, Pb, Zn, As, Sn and K2O in sinter pellets.” Accessed: Mar. 01, 2025. [Online]. Available: https://www.esi-xrf.com/info/xrf-spectrometer-edx9000b-detects-the-content-89964537.html
GOST 10180-2012 Concretes. Methods for strength determination using reference specimens. 2012.
G-Park, “SG Brick.” Accessed: Mar. 01, 2025. [Online]. Available: https://gpark.kz/zavody/sg-brick/
GOST 21216-2014 Clay raw materials. Test methods. 2014.
GOST 57606-2017 Ceramic composites. Compression test method at normal temperature. 2017.
C. Shi and K. Zheng, “A review on the use of waste glasses in the production of cement and concrete,” Resour Conserv Recycl, vol. 52, no. 2, pp. 234–247, Dec. 2007, doi: 10.1016/j.resconrec.2007.01.013. DOI: https://doi.org/10.1016/j.resconrec.2007.01.013
I. D. Konorov and A. M. M. Ibrahim, “Using waste glass as a partial replacement for binder in concrete,” Economics of construction, no. 11, pp. 183–190, 2023, doi: 10.24412/0131-7768-2023-11-183-190.
H. F. W. Taylor, Cement chemistry, vol. 2. London: Thomas Telford Publishing, 1997. doi: 10.1680/cc.25929. DOI: https://doi.org/10.1680/cc.25929
P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th Edition. McGraw-Hill Companies, Inc, 2006.
R. Siddique, J. Khatib, and I. Kaur, “Use of recycled plastic in concrete: A review,” Waste Management, vol. 28, no. 10, pp. 1835–1852, 2008, doi: 10.1016/j.wasman.2007.09.011. DOI: https://doi.org/10.1016/j.wasman.2007.09.011
A. Salakhov, V. Morozov, N. Boltakova, R. Salakhova, and G. Faseeva, “Sovremennye metody issledovaniya dlya razrabotki tehnologii innovacionnyh keramicheskih materialov,” Herald of Technological University, vol. 16, no. 21, pp. 95–97, 2013.
R. Xiao, B. Huang, H. Zhou, Y. Ma, and X. Jiang, “A state-of-the-art review of crushed urban waste glass used in OPC and AAMs (geopolymer): Progress and challenges,” Cleaner Materials, vol. 4, p. 100083, Jun. 2022, doi: 10.1016/j.clema.2022.100083. DOI: https://doi.org/10.1016/j.clema.2022.100083
A. V. Khorina and T. I. Shelkovnikova, “INTERCONNECTION OF HIGH-STRENGTH CERAMIC PROPERTIES WITH MICROSTRUCTURE AND PHASE COMPOSITION,” Bulletin of the East Siberian State University of Technology and Management, vol. 94, no. 3, pp. 74–89, 2024, doi: 10.53980/24131997_2024_3_74. DOI: https://doi.org/10.53980/24131997_2024_3_74
Y.-H. Choi, Y.-W. Kim, I.-S. Han, and S.-K. Woo, “Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics,” J Mater Sci, vol. 45, no. 24, pp. 6841–6844, Dec. 2010, doi: 10.1007/s10853-010-4939-9. DOI: https://doi.org/10.1007/s10853-010-4939-9
Downloads
Published
How to Cite
License
Copyright (c) 2025 Danara Mazhit, Zhanar Kaliyeva, Daniyar Bazarbayev

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.