Refined mechanical and mathematical model of an elastic half-plane

Authors

DOI:

https://doi.org/10.54355/tbus/2.1.2022.0014

Keywords:

elastic foundation, half-plane, displacements, stresses, deformation, distribution function

Abstract

Loads cause vertical movements of the foundations of all the structures. Their magnitude determines the building safe operation. A closed analytical solution to the problem of the linear elastic theory for the distribution of stresses and strains in a homogeneous isotropic elastic foundation has been presented. The article considers the calculation of the stress-strain state of an elastic half-plane by the method in displacement functions. The theory of calculating an elastic half-plane has been built. New formulas have been are found that determine displacements and stresses at any points of an elastic foundation. An example of calculating an elastic half-plane under the action of a normal and tangential loads has been given.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Sungat Akhazhanov, Faculty of Mathematics and Information Technologies, Karaganda Buketov University, Karaganda, Kazakhstan

PhD, Associate Professor

Daniyar Baltabai, Faculty of Mathematics and Information Technologies, Karaganda Buketov University, Karaganda, Kazakhstan

MSc Student

Bayan Nurlanova, Faculty of Mathematics and Information Technologies, Karaganda Buketov University, Karaganda, Kazakhstan

Senior Lecturer

References

Mehanika gruntov, osnovaniya i fundamenty / B.I. Dalmatov. — Leningrad: Stroiizdat, 1988. — 415 p.

Mehanika gruntov / N.A. Tsytovich. — Moscow: Gosstroiizdat, 1963. — 636 p.

Raschet deformacij osnovanij zdanij i sooruzhenij / S.G. Kushner. — Zaporozh'e: PLC «IPOZaporozh'e», 2008. — 496 p.

Complex variable methods in plane elasticity / Lu Jian-ke. — Singapore: World Scientific Pub Co Inc, 1995. — 240 p.

On complex variable method in finite elasticity / A. Akinola // Applied Math. — 2009. — Vol. 1. — P. 1–16.

Analytical Methods in Geomechanics / K.T. Chau. — Florida, USA: CRC Press, 2012. — 424 p.

Methods of the theory of functions of a complex variable in problems of geomechanics / A.N. Bogomolov, A.N. Ushakov. — Volgograd: Peremena, 2014. — 227 p.

A complex variable solutions for a deforming circular tunnel in an elastic half-plane / A. Verruijt // Numerical and Analytical Methods in Geomechanics. — 1997. — Vol. 21, No. 2. — P. 77-89. https://doi.org/10.1002/(SICI)1096-9853(199702)21:2<77::AID-NAG857>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1096-9853(199702)21:2<77::AID-NAG857>3.0.CO;2-M

Stress-strain state of an elastic half-plane at a linear shift of a part of its boundary / A.N. Bogomolov, A.N. Ushakov // Vestnik MGSU. — 2017. — Vol. 12, No. 2. — P. 184-192. https://doi.org/10.22227/1997-0935.2017.2.184-192 DOI: https://doi.org/10.22227/1997-0935.2017.2.184-192

Representation of incomplete contact problems by half-planes / H. Andresen, D. Hills, M. Moore // Eur. J. Mech. A Solids. — 2020. — Vol. 85. — P. 104138. https://doi.org/10.1016/j.euromechsol.2020.104138 DOI: https://doi.org/10.1016/j.euromechsol.2020.104138

Closed-form solutions for tilted three-part piecewise-quadratic half-plane contacts / H. Andresen, D.A. Hills, J. Vazquez // Int. J. Mech. Sci. — 2019. — Vol. 150. — P. 127-134. https://doi.org/10.48550/arXiv.1902.08044 DOI: https://doi.org/10.1016/j.ijmecsci.2018.09.024

Half-plane partial slip contact problems with a constant normal load subject to a shear force and differential bulk tension / M. Moore, R. Ramesh, D. Hills, et al. // J. Mech. Phys. Solids. — 2018. — Vol. 118. — P. 245-253. https://doi.org/10.1016/j.jmps.2018.05.017 DOI: https://doi.org/10.1016/j.jmps.2018.05.017

Explicit equations for the half-plane sub-surface stress field under a flat rounded contact / J. Vazquez, C. Navarro, J. Domınguez // J. Strain Anal. Eng. Des. — 2014. — Vol. 49, No. 8. — P. 562-570. https://doi.org/10.1177/0309324714545665 DOI: https://doi.org/10.1177/0309324714545665

Asymptotic analysis of stresses in an isotropic linear elastic plane or half-plane weakened by a finite number of holes / J. Kratochvil, W. Becker // Arch. Appl. Mech. — 2012. — Vol. 82. — P. 743-754. https://doi.org/10.1007/S00419-011-0587-Z DOI: https://doi.org/10.1007/s00419-011-0587-z

Development of a distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane / M.W. Hallback, N. Tofique // Int. J. Solids Struct. — 2014. — Vol. 51. — P. 2878-2892. https://doi.org/10.1016/j.ijsolstr.2014.04.011 DOI: https://doi.org/10.1016/j.ijsolstr.2014.04.011

Stress intensity factor for the interaction between a straight crack and a curved crack in plane elasticity / M.R. Aridi, N.M.A. Nik Long, Z.K. Eshkuvatov / Acta Mech. Solida Sin. — 2016. — Vol. 29. — P. 407-41. https://doi.org/10.1016/S0894-9166(16)30243-9 DOI: https://doi.org/10.1016/S0894-9166(16)30243-9

Evaluation of the T-stress for multiple cracks in an elastic half-plane using singular integral equation and Green’s function method / Y.Z. Chen // Appl. Math. Comput. — 2014. — Vol. 228. — P. 17-30. https://doi.org/10.1016/j.amc.2013.11.094 DOI: https://doi.org/10.1016/j.amc.2013.11.094

Osnovy teorii uprugosti i plastichnosti / A.V. Alexandrov, V.D. Potapov. — Moscow: Vysshaya shkola, 1990. — 400 p.

Mehanika ploskih i prostranstvennyh konstrukcij / K.A. Tursunov. — Karaganda: KTU Publishing House, 2010. — 130 p.

Downloads

Published

2022-03-24

How to Cite

Akhazhanov, S., Baltabai, D., & Nurlanova, B. (2022). Refined mechanical and mathematical model of an elastic half-plane. Technobius, 2(1), 0014. https://doi.org/10.54355/tbus/2.1.2022.0014

Issue

Section

Articles

Categories

Most read articles by the same author(s)