
Technobius, 2022, 2(1), 0014, DOI: https://doi.org/10.54355/tbus/2.1.2022.0014 

 

Technobius 
https://technobius.kz/  

e-ISSN 

2789-7338 

 

 

 
Article 

Refined mechanical and mathematical model of an elastic half-plane 

 
Sungat Akhazhanov*, Daniyar Baltabai, Bayan Nurlanova 

 
Faculty of Mathematics and Information Technologies, Karaganda Buketov University, Karaganda, Kazakhstan 

*Correspondence: stjg@mail.ru 

 

 
Abstract. Loads cause vertical movements of the foundations of all the structures. Their magnitude determines the 

building safe operation. A closed analytical solution to the problem of the linear elastic theory for the distribution of 

stresses and strains in a homogeneous isotropic elastic foundation has been presented. The article considers the 

calculation of the stress-strain state of an elastic half-plane by the method in displacement functions. The theory of 

calculating an elastic half-plane has been built. New formulas have been are found that determine displacements and 

stresses at any points of an elastic foundation. An example of calculating an elastic half-plane under the action of a 

normal and tangential loads has been given. 
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1. Introduction 

 

Under the impact of various loads, all the structures under construction undergo greater or 

lesser vertical displacements (settlements), as well as horizontal shears that must be taken into 

account when calculating foundation bases. If the settlement values do not exceed some 

predetermined value, then it is considered that the long-term safe operation of the structure is 

ensured. In this regard, the calculation of the foundations of structures by deformations (according 

to the second group of limit states) is one of the most important problems of soil mechanics. 

Numerous experiments have established [1] that deformations of soils under foundations 

develop mainly in the upper zone of the foundation, therefore, to analyze the stress-strain state of 

the foundations of structures, it is possible to use the calculation models based on solutions of the 

elastic theory [2,3]. 

The method of complex potentials has been used to solve a number of topical problems in 

the mechanics of a deformable solid body [4–6], as well as mining mechanics and soil mechanics 

[7,8]. 

Work provides a solution to the problem of stress distribution in the soil massif with a 

uniform displacement of the boundary section of the elastic half-plane, which was used to calculate 

the total settlement of the strip foundation, taking into account additional stresses arising in the soil 

massif due to the displacement of the loaded boundary section. 

However, in practice, uneven movements are often observed that lead, for example, to the 

occurrence of the structure rolls. In works [9], the problems of the stress-strain state of a soil massif 

with linear displacement of a section of its boundary that simulates this type of the structure 

movement, are considered. 

Andresen et al. [10] considered a means of determining the total effective bulk stress. Half-

planar contacts subjected to a stressed state are considered in the following works [11-13]. 

Comprehensive studies of the stress-strain state of an isotropic half-plane with cracks are shown in 

the works [14-17]. 
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In this article, within the framework of the model of a linearly deformable medium, the 

problem of the stress-strain state of an elastic half-plane is considered. The solution of the problem 

has been performed by the method in displacement functions. 

 
2. Methods 

 

To obtain the mechanical and mathematical model of an elastic half-plane, we use the 

method in displacement functions in solving elementary problems of the two-dimensional theory of 

elasticity. The method for determining the stress-strain state of an elastic half-plane makes it 

possible to obtain solutions to problems of the plane theory of elasticity not only for stresses, but 

also for displacements. Differential dependences of the stress and displacement components make it 

possible to obtain resolving equations for solving a specific problem. 

Let's imagine an elastic foundation in the form of a half-plane and let’s consider it in the 

Cartesian coordinate system. The stress-strain state of the elastic foundation will be determined by 

the calculation method in displacement functions. 

To obtain a mathematical model, let’s use the basic relations of the plane elastic theory [18]. 

Stress balance Eq. (1): 
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Strain components (Cauchy) Eq. (2): 
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Physical relationships (Hooke law) Eq. (3): 
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where: 31,  are the components of normal stresses along the ( )31 , xx  axes; 13  is a tangential 

stress; 31,UU  are the components of displacements in the direction of coordinate axes ),( 31 xx ; 

31,  are linear deformations; 13  is the shear deformation; E ,G ,  are the elasticity modulus, 

the shear modulus and the Poisson coefficient of the elastic foundation material. 

Based on Eq. (2), the components of stresses Eq. (3) will take the form Eq. (4): 

,

,

,

1

3

3

1
13

1

1

3

3
3

3

3

1

1
1















+




=















+




=















+




=

x

U

x

U
G

x

U

x

U
E

x

U

x

U
E







     (4) 

 



Technobius, 2022, 2(1), 0014 

 

where: 
21 −

=
E

E  is the generalized elasticity modulus. 

Substituting Eq. (4) into the first equation of system Eq. (1), we obtain the balance equation 

relative to displacements: 
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By expressing the components of displacements through the function of displacements F, 

let’s determined the solution as follows Eq. (5): 
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where: ),( 31 xxF  is the function of displacement. 

Substituting stresses Eq. (4) into the second expression of system Eq. (1), we obtain: 
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Substituting Eq. (5) into this equation, let’s determine the resolving equation for F : 
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Taking into consideration the E  and G  values, we obtain the equation in the standard form 

Eq. (6): 
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Based on Eq. (5), components of stresses Eq. (4) will be as follows Eq. (7): 
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In order to solve biharmonic Eq. (6), let’s represent the function of displacement in the 

following form [19] Eq. (8): 

,)()(),( 1331 xWxxxF =      (8) 
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where: )( 3x  is the distribution function; )( 1xW  is the flexure function. 

Taking into consideration function of displacement Eq. (8) and the equation of transitional 

processes )(
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Based on these equations, we obtain Eq. (9) and Eq. (10): 
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where: h  is the elastic foundation thickness; 0z  is a dimensionless transversal coordinate; 

( ) ( )00 , zfz  is the function of displacement distribution ( )31,UU ; k  is the strained foundation 

parameter. 
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where: ( )0z  , ( )0z , ( )0z  is the function of stress distribution 3131 ,,  . 

Substituting into resolving Eq. (6) function of displacement Eq. (8) and taking into account 

the equation of transitional processes, we obtain: 

,0)()(
)(

)(2
)(

)( 132
1

1
2

34
1

1
4

3 =++ xWx
dx

xWd
x

dx

xWd
x IV  

( ) ( ) ( )  ,0)(2 10
44

0
22

0 =+− xWzhkzhkzІV   

( ) ( ) ( ) .02 0
4

0
2

0 =+− zkzkzІV   

 

Its general solution is written down in the following form: 
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If to use the general solution in the elastic half-plane ( ) )0,( 00 =→ zz  , then this 

solution will take the form Eq. (11): 
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Thus, if the functions ( )1xW  and ( )0z , are known, then the proposed method of 

calculation makes it possible to obtain the stress-strain state for the elastic half-plane. 

 
3. Results 

 

Similar problems (rigid punch, semi-infinite plane) were considered by Sadovsky for a 

punch and by Flaman (action of a concentrated force). These problems have the following features: 

it is impossible to determine the values of the reactive pressure at the corner points of the stamp; it 

is impossible to determine the vertical displacement under the force. These shortcomings in the 

considered problems are easily eliminated by applying the method in displacement functions. 

Example. Let a normal ( )1x  and tangential ( )1x  distributed loads act on the elastic half-

plane ( )00 =z . Based on Eq. (10), we write the boundary conditions in the form Eq. (12): 
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where: 00 ,  are the parameters of the normal and tangential loads. 

Let’s consider some private cases.  
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By integrating the equation, we obtain the flexure function Eq. (13): 
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2) If only a tangential load ( )
L
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By integrating we find the flexure function Eq. (14): 

( ) .
12

,,sin
2

1
1

3

3
0

0
0

1
01

h
J

JE

L
W

L

x
WxW ==−=




   (14) 

 

In the general case 0,0 00   , the, taking into consideration Eq. (10), boundary 

conditions Eq. (12) will be represented in the following form Eq. (15): 
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Let’s determine function Eq. (11) and the derivatives at the ( )00 =z  point Eq. (16): 
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Substituting these values into Eq. (15), we obtain the following system of equations: 

( ) ,
2

1
12

21
0 C

k
C





−+=  

( )
( )

.
1

1
12

210 C
k

C
k 


−

++=  

 

From these equations there are determined the constants Eq. (17): 
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Substituting the 21,CC  values into Eq. (11), we determine the solution of the )( 0z  function 

Eq. (18): 
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To determine the components of displacements and stresses, we set the numerical data of the 

parameters. The parameters of the normal and tangential loads are 1,1 00 ==  , the length of the 

elastic half-plane is 10=L  m, the thickness of the elastic half-plane is 3=h  m, the elasticity 

modulus of the elastic half-plane is 30=Е  Pa. 

The solutions of the problem have been obtained using the computer program MathCad. 

Figure 1 shows the flexure function of the elastic half-plane at 30,20,10=Е  Pa. The results of 

displacements, normal and shear stresses of the elastic half-plane are shown in Figures 2-4. 

 

 
Figure 1 – The flexure function of the elastic half-plane 

 

 
Figure 2 – The components of displacements 
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Figure 3 – The components of normal stresses 

  

Figure 4 – A tangential stress 

 

As can be seen from the Figures 1-4, with an increase in the thickness of the elastic 

foundation, the values of the components of displacements and stresses decrease. It is known that 

with an increase in the thickness of the elastic base, the values of the components of displacements 

and stresses are not taken into account. 

Thus, the results obtained allow determining displacements Eq. (9) and stresses Eq. (10) of 

the elastic half-plane in an analytical form. 

 
4. Conclusions 

 

Summarizing the obtained results, we can draw the following conclusions: 

1. The theory for calculating the elastic half-plane has been developed. 

2. The stress and displacement components of the elastic half-plane have been obtained in a 

closed form. 

3. The distribution functions of displacements and stresses have been found in analytical 

form. 

4. The flexure function of the elastic half-plane has been obtained. 
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