Eco-efficient composite cements and arbolite using burnt clay shale from the Mynaral deposit

Authors

DOI:

https://doi.org/10.54355/tbus/5.3.2025.0087

Keywords:

arbolite, rice husks, strength, binders, composite cement, active mineral additives, clay shale

Abstract

This study investigates the potential of burnt clay shale (BCS) from the Mynaral deposit (Zhambyl region, Kazakhstan) as an active mineral additive in composite cements and arbolite. Thermal and X-ray diffraction analyses revealed progressive dehydration, decarbonation, and decomposition of kaolinite, chlorite, and calcite, with optimal activation at 900 °C. Pozzolanic activity tests confirmed maximum reactivity at this temperature. Mechanical testing showed that 10–15% BCS increased cement strength up to 51 MPa, while higher dosages reduced performance. Arbolite samples with ash-and-slag binders and controlled alkaline additives demonstrated superior density and strength, supported by SEM evidence of dense crystalline microstructures and strong binder–filler adhesion. The findings highlight BCS as an effective, eco-friendly component reducing clinker consumption and CO2 emissions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Baurzhan Amiraliyev, Department of Silicate Technology and Metallurgy, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

PhD Student

Kuanysh Imanaliyev, Department of Architecture and Urban Planning, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

Candidate of Technical Sciences, Associate Professor, Head

Zhambul Aymenov, The Research Institute of Natural and Technical Sciences, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

Doctor of Technical Sciences, Professor

Erzhan Kuldeyev, K.I. Satpayev Kazakh National Research Technical University, Almaty, Kazakhstan

Candidate of Geological and Mineralogical Sciences, Professor, Vice-Rector

Bakhrom Tulaganov, Tashkent University of Architecture and Civil Engineering, Tashkent, Uzbekistan

PhD, Rector

References

M. Dlimi, R. Agounoun, I. Kadiri, R. Saadani, and M. Rahmoune, “Thermal performance assessment of double hollow brick walls filled with hemp concrete insulation material through computational fluid dynamics analysis and dynamic thermal simulations,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 3, p. 100124, Mar. 2023, doi: 10.1016/j.prime.2023.100124. DOI: https://doi.org/10.1016/j.prime.2023.100124

B. Martínez, V. Mendizabal, M. B. Roncero, E. Bernat-Maso, and L. Gil, “Towards sustainable building solutions: Development of hemp shiv-based green insulation material,” Constr Build Mater, vol. 414, p. 134987, Feb. 2024, doi: 10.1016/j.conbuildmat.2024.134987. DOI: https://doi.org/10.1016/j.conbuildmat.2024.134987

K. Imanaliyev, B. Amiraliyev, K. Akmalaiuly, E. Kuldeyev, E. Yunusaliyev, and Z. Aymenov, “Research of technological parameters for producing thermal insulating arbolite based on developed slag alkali binders,” Technobius, vol. 4, no. 3, p. 0065, Sep. 2024, doi: 10.54355/tbus/4.3.2024.0065. DOI: https://doi.org/10.54355/tbus/4.3.2024.0065

X. Ding, J. Yu, J. Lin, Z. Chen, and J. Li, “Experimental investigations of prefabricated lightweight self-insulating foamed concrete wall panels,” Structures, vol. 61, p. 106001, Mar. 2024, doi: 10.1016/j.istruc.2024.106001. DOI: https://doi.org/10.1016/j.istruc.2024.106001

I. E. Kazimagomedov, L. V Trykoz, F. I. Kazimagomedov, and A. V Rachkovskiy, “Study of the forming processes of the arbolite structure during the chemical activation of flax shove,” IOP Conf Ser Mater Sci Eng, vol. 708, no. 1, p. 012086, Dec. 2019, doi: 10.1088/1757-899X/708/1/012086. DOI: https://doi.org/10.1088/1757-899X/708/1/012086

N. N. Zhanikulov et al., “Receiving Portland Cement from Technogenic Raw Materials of South Kazakhstan,” Eurasian Chemico-Technological Journal, vol. 21, no. 4, pp. 333–340, Dec. 2019, doi: 10.18321/ectj890. DOI: https://doi.org/10.18321/ectj890

B. Isakulov, A. Issakulov, and A. Dąbska, “Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders,” Infrastructures (Basel), vol. 10, no. 7, p. 179, Jul. 2025, doi: 10.3390/infrastructures10070179. DOI: https://doi.org/10.3390/infrastructures10070179

B. Amiraliyev et al., “Heat Treatment of Clay Shales and Their Utilization as Active Mineral Additives for the Production of Composite Cements,” Journal of Composites Science, vol. 9, no. 6, p. 269, May 2025, doi: 10.3390/jcs9060269. DOI: https://doi.org/10.3390/jcs9060269

ISO 12677:2011 Chemical analysis of refractory products by X-ray fluorescence (XRF) — Fused cast-bead method. 2011, p. 75.

ISO 11357-1:2023 Plastics — Differential scanning calorimetry (DSC). 2023, p. 34.

D. Alderton, “X-Ray Diffraction (XRD),” in Encyclopedia of Geology, Elsevier, 2021, pp. 520–531. doi: 10.1016/B978-0-08-102908-4.00178-8. DOI: https://doi.org/10.1016/B978-0-08-102908-4.00178-8

I. V. R. Ramanujam, K. R. Reddy, and N. V. Ramana, “Evaluation of Pozzolanic activity and lime reactivity of fly ash, GGBS, mica powder and pumice as binders,” E3S Web of Conferences, vol. 529, p. 01008, May 2024, doi: 10.1051/e3sconf/202452901008. DOI: https://doi.org/10.1051/e3sconf/202452901008

H. Wang, X. Liu, and Z. Zhang, “Pozzolanic activity evaluation methods of solid waste: A review,” J Clean Prod, vol. 402, p. 136783, May 2023, doi: 10.1016/j.jclepro.2023.136783. DOI: https://doi.org/10.1016/j.jclepro.2023.136783

GOST 310.4-81 Cements. Methods of bending and compression strength determination. 1981, p. 11.

GOST 30744-2001 Methods of testing with using polyfraction standard sand. 2001, p. 36.

ASTM C188-17 Test Method for Density of Hydraulic Cement. ASTM International, 2017, p. 3. doi: 10.1520/C0188-17. DOI: https://doi.org/10.1520/C0188-17

GOST 10180-2012. Concrete. Methods for Determining Strength Using Control Specimens. Moscow, Russia, 2018, p. 36.

ISO/TS 21383:2021 Microbeam analysis — Scanning electron microscopy — Qualification of the scanning electron microscope for quantitative measurements. 2021, p. 59.

E. Güneyisi, M. Gesoğlu, Özturan T., and K. Mermerdaş, “Comparing Pozzolanic Activity of Metakaolin and Calcined Kaolin, and Their Effects on Strength of Concrete,” in 10th International Congress on Advances in Civil Engineering (ACE 2012), Ankara, Turkey : Middle East Technical University, 2012, pp. 1–10.

A. Tironi, M. A. Trezza, A. N. Scian, and E. F. Irassar, “Assessment of pozzolanic activity of different calcined clays,” Cem Concr Compos, vol. 37, no. 1, 2013, doi: 10.1016/j.cemconcomp.2013.01.002. DOI: https://doi.org/10.1016/j.cemconcomp.2013.01.002

J. Ambroise, M. Murat, and J. Péra, “Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions,” Cem Concr Res, vol. 15, no. 2, 1985, doi: 10.1016/0008-8846(85)90037-7. DOI: https://doi.org/10.1016/0008-8846(85)90037-7

R. Walker and S. Pavía, “Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes,” Materials and Structures/Materiaux et Constructions, vol. 44, no. 6, 2011, doi: 10.1617/s11527-010-9689-2. DOI: https://doi.org/10.1617/s11527-010-9689-2

Downloads

Published

2025-09-29

How to Cite

Amiraliyev, B., Imanaliyev, K., Aymenov, Z., Kuldeyev, E., & Tulaganov, B. (2025). Eco-efficient composite cements and arbolite using burnt clay shale from the Mynaral deposit. Technobius, 5(3), 0087. https://doi.org/10.54355/tbus/5.3.2025.0087

Issue

Section

Articles

Categories

Most read articles by the same author(s)