Investigation of the properties of fly ash and slag-based geopolymer concrete containing waste glass aggregates

Authors

DOI:

https://doi.org/10.54355/tbus/5.2.2025.0081

Keywords:

geopolymer concrete, industrial waste, waste glass aggregate, alkali-silica reaction, alkali activator solution

Abstract

This paper evaluates the geopolymer concrete produced using industrial waste and waste glass obtained by crushing glass materials. Geopolymer concrete mixtures were prepared with a water-to-binder ratio of 0.35 and an alkali activator solution to binder ratio (AAS/B) of 0.5 and 0.4. The partial substitution of sand by waste glass was 10%, 20% and 30%. Laboratory results showed that the compressive strength of geopolymer concrete increased with the addition of waste glass for a geopolymer concrete with AAS/B = 0.5, but decreased for AAS/B = 0.4. The expansion due to the alkali-silica reaction (ASR) was below 0.1% which is the expansion limit. The shrinkage of geopolymer concrete during drying decreases with an increase in glass content. The results of this study indicate that using glass as a partial sand substitute in geopolymer concrete provides sufficient mechanical properties. In addition, the production of this concrete will improve environmental conditions by reducing the extraction of raw materials and recycling waste glass.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Zhuzimkul Urkinbayeva, Department of Technology of Industrial and Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Senior Lecturer

Assel Jexembayeva, Department of Innovative Development, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD, Director

Marat Konkanov, Science and Production Centre “ENU-Lab”, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD, Director

Samal Akimbekova, Department of Technology of Industrial and Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD Student

Lailya Zhaksylykova, Department of Architecture, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

MSc, Acting Associate Professor

Tariq Umar, School of Architecture and Environment, University of the West of England, Bristol, United Kingdom

PhD, Professor

References

C.-K. Ma, A. Z. Awang, and W. Omar, “Structural and material performance of geopolymer concrete: A review,” Constr Build Mater, vol. 186, pp. 90–102, Oct. 2018, doi: 10.1016/j.conbuildmat.2018.07.111. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.111

S. Chowdhury, S. Mohapatra, A. Gaur, G. Dwivedi, and A. Soni, “Study of various properties of geopolymer concrete – A review,” Mater Today Proc, vol. 46, pp. 5687–5695, 2021, doi: 10.1016/j.matpr.2020.09.835. DOI: https://doi.org/10.1016/j.matpr.2020.09.835

N. A. Eroshkina and A. A. Mishanov, “Vodostojkost geopolimernyh vyazhushih s kompleksnoj dobavkoj,” in Teoriya i praktika povysheniya effektivnosti stroitelnyh materialov: Sbornik nauchnyh trudov I Vserossijskoj konferencii studentov, aspirantov i molodyh uchenyh, Penza: PGUAS, 2006, pp. 88–91.

A. Hassan, M. Arif, and M. Shariq, “Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure,” J Clean Prod, vol. 223, pp. 704–728, Jun. 2019, doi: 10.1016/j.jclepro.2019.03.051. DOI: https://doi.org/10.1016/j.jclepro.2019.03.051

T. Van Lam, N. Xuan Hung, V. Kim Dien, B. I. Bulgakov, S. I. Bazhenova, and O. V. Aleksandrova, “Geopolymer concrete made using large-tonnage technogenic waste,” Stroitel’stvo: nauka i obrazovanie [Construction: Science and Education], vol. 11, no. 2, pp. 17–37, Jun. 2021, doi: 10.22227/2305-5502.2021.2.2. DOI: https://doi.org/10.22227/2305-5502.2021.2.2

Heidelberg, “Itogi 2022 goda. Proizvodstvo cementa v Respublike Kazahstan,” Heidelberg Materials. Accessed: Jun. 26, 2025. [Online]. Available: https://www.cem.kz/ru/news/30-itogi-2022-goda-proizvodstvo-tsementa-v-respublike-kazahstan.html

Md. N. N. Khan and P. K. Sarker, “Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar,” Constr Build Mater, vol. 263, p. 120177, Dec. 2020, doi: 10.1016/j.conbuildmat.2020.120177. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120177

Nesterov V.Yu., Kalashnikov V.I., Yu. S. Kuznecov, Yu. V. Gavrilova, and N. A. Eroshkina, “Silicitovye geopolimery: pervye shagi k sozdaniyu materiala budushego,” in Aktualnye voprosy stroitelstva. Materialy MNTK, Saransk, 2004, p. 160.

G. S. Ryu, Y. B. Lee, K. T. Koh, and Y. S. Chung, “The mechanical properties of fly ash-based geopolymer concrete with alkaline activators,” Constr Build Mater, vol. 47, pp. 409–418, Oct. 2013, doi: 10.1016/j.conbuildmat.2013.05.069. DOI: https://doi.org/10.1016/j.conbuildmat.2013.05.069

N. Almesfer and J. Ingham, “Effect of Waste Glass on the Properties of Concrete,” Journal of Materials in Civil Engineering, vol. 26, no. 11, Nov. 2014, doi: 10.1061/(ASCE)MT.1943-5533.0001077. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001077

R. R. Bellum, M. Al Khazaleh, R. K. Pilla, S. Choudhary, and C. Venkatesh, “Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete,” Journal of Building Pathology and Rehabilitation, vol. 7, no. 1, p. 25, Dec. 2022, doi: 10.1007/s41024-022-00163-4. DOI: https://doi.org/10.1007/s41024-022-00163-4

A. E. Kurtoğlu et al., “Mechanical and durability properties of fly ash and slag based geopolymer concrete,” Advances in Concrete Construction, vol. 6, no. 4, 2018, doi: 10.12989/acc.2018.6.4.345.

L. N. Assi, E. (Eddie) Deaver, M. K. ElBatanouny, and P. Ziehl, “Investigation of early compressive strength of fly ash-based geopolymer concrete,” Constr Build Mater, vol. 112, pp. 807–815, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.03.008. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.008

Md. N. N. Khan and P. K. Sarker, “Alkali silica reaction of waste glass aggregate in alkali activated fly ash and GGBFS mortars,” Mater Struct, vol. 52, no. 5, p. 93, Oct. 2019, doi: 10.1617/s11527-019-1392-3. DOI: https://doi.org/10.1617/s11527-019-1392-3

K. H. Tan and H. Du, “Use of waste glass as sand in mortar: Part I – Fresh, mechanical and durability properties,” Cem Concr Compos, vol. 35, no. 1, pp. 109–117, Jan. 2013, doi: 10.1016/j.cemconcomp.2012.08.028. DOI: https://doi.org/10.1016/j.cemconcomp.2012.08.028

P. Cong and Y. Cheng, “Advances in geopolymer materials: A comprehensive review,” Journal of Traffic and Transportation Engineering (English Edition), vol. 8, no. 3, pp. 283–314, Jun. 2021, doi: 10.1016/j.jtte.2021.03.004. DOI: https://doi.org/10.1016/j.jtte.2021.03.004

M. T. Ghafoor, Q. S. Khan, A. U. Qazi, M. N. Sheikh, and M. N. S. Hadi, “Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature,” Constr Build Mater, vol. 273, p. 121752, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121752. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121752

T. Phoo-ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, and P. Chindaprasirt, “Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer,” Constr Build Mater, vol. 91, pp. 1–8, Aug. 2015, doi: 10.1016/j.conbuildmat.2015.05.001. DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.001

A. Fauzi, M. F. Nuruddin, A. B. Malkawi, and M. M. A. B. Abdullah, “Study of Fly Ash Characterization as a Cementitious Material,” Procedia Eng, vol. 148, pp. 487–493, 2016, doi: 10.1016/j.proeng.2016.06.535. DOI: https://doi.org/10.1016/j.proeng.2016.06.535

G. N. Dolzhenko, TS 5870-006-30993911-2014 Geopolymer Concrete. Technical Conditions. Chelyabinsk: Innovation Technopark Arkh & Stroy, 2014.

B. Meskhi et al., “Analytical Review of Geopolymer Concrete: Retrospective and Current Issues,” Materials, vol. 16, no. 10, p. 3792, May 2023, doi: 10.3390/ma16103792. DOI: https://doi.org/10.3390/ma16103792

P. Pavithra, M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, and A. N. Mohanty, “A mix design procedure for geopolymer concrete with fly ash,” J Clean Prod, vol. 133, pp. 117–125, Oct. 2016, doi: 10.1016/j.jclepro.2016.05.041. DOI: https://doi.org/10.1016/j.jclepro.2016.05.041

ASTAM, ASTM C109/C109M Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken, PA: ASTM International, 2020.

M. Padmakar, B. Barhmaiah, and M. Leela Priyanka, “Characteristic compressive strength of a geo polymer concrete,” Mater Today Proc, vol. 37, pp. 2219–2222, 2021, doi: 10.1016/j.matpr.2020.07.656. DOI: https://doi.org/10.1016/j.matpr.2020.07.656

“Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” Oct. 01, 2022, ASTM International, West Conshohocken, PA. doi: 10.1520/C1567-22. DOI: https://doi.org/10.1520/C1567-22

J. Lei, J. Fu, and E.-H. Yang, “Alkali-Silica Reaction Resistance and Pore Solution Composition of Low-Calcium Fly Ash-Based Geopolymer Concrete,” Infrastructures (Basel), vol. 5, no. 11, p. 96, Nov. 2020, doi: 10.3390/infrastructures5110096. DOI: https://doi.org/10.3390/infrastructures5110096

“Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement,” Dec. 01, 2023, ASTM International, West Conshohocken, PA. doi: 10.1520/C0596-23. DOI: https://doi.org/10.1520/C0596-23

P. S. Deb, P. Nath, and P. K. Sarker, “Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature,” Procedia Eng, vol. 125, pp. 594–600, 2015, doi: 10.1016/j.proeng.2015.11.066. DOI: https://doi.org/10.1016/j.proeng.2015.11.066

N. Kozhageldi et al., “Properties of Geopolymer Mortar Mixtures Containing Waste Glass Aggregates and River Sand,” Key Eng Mater, vol. 945, pp. 93–99, May 2023, doi: 10.4028/p-67b121. DOI: https://doi.org/10.4028/p-67b121

M. Dineshkumar and C. Umarani, “Effect of Alkali Activator on the Standard Consistency and Setting Times of Fly Ash and GGBS‐Based Sustainable Geopolymer Pastes,” Advances in Civil Engineering, vol. 2020, no. 1, Jan. 2020, doi: 10.1155/2020/2593207. DOI: https://doi.org/10.1155/2020/2593207

“Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Nov. 15, 2023, ASTM International, West Conshohocken, PA. doi: 10.1520/C1260-23. DOI: https://doi.org/10.1520/C1260-23

M. U. Salim and M. A. Mosaberpanah, “The mechanism of alkali-aggregate reaction in concrete/mortar and its mitigation by using geopolymer materials and mineral admixtures: a comprehensive review,” European Journal of Environmental and Civil Engineering, vol. 26, no. 14, pp. 6766–6806, Oct. 2022, doi: 10.1080/19648189.2021.1960899. DOI: https://doi.org/10.1080/19648189.2021.1960899

H. Taghvayi, K. Behfarnia, and M. Khalili, “The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete,” Journal of Advanced Concrete Technology, vol. 16, no. 7, pp. 293–305, Jul. 2018, doi: 10.3151/jact.16.293. DOI: https://doi.org/10.3151/jact.16.293

Downloads

Published

2025-06-28

How to Cite

Urkinbayeva, Z., Jexembayeva, A., Konkanov, . M., Akimbekova, S., Zhaksylykova, L., & Umar, T. (2025). Investigation of the properties of fly ash and slag-based geopolymer concrete containing waste glass aggregates. Technobius, 5(2), 0081. https://doi.org/10.54355/tbus/5.2.2025.0081

Issue

Section

Articles

Categories

Funding data

Most read articles by the same author(s)