Experimental study of sound wave propagation patterns

Authors

DOI:

https://doi.org/10.54355/tbus/4.2.2024.0057

Keywords:

sound waves, sound propagation, noise levels, acoustic engineering, measurement

Abstract

The present study compares the behavior of different sound types and their sources concerning distance. Experimental findings demonstrate a consistent reduction in noise levels with increasing distance from the sound origin, aligning with anticipated sound propagation patterns. Median noise level reductions are quantified, showing decreases from 72.7 dB at the source to 54.8 dB at a distance of 3 m. Pulsed sounds exhibit pronounced fluctuations and peaks at close distances, while steady and blended sounds maintain more uniform levels. An exponential model accurately characterizes the noise reduction phenomenon (R² = 0.8664), underscoring its applicability for construction noise control. These results offer valuable insights into sound propagation dynamics and provide a basis for developing effective noise control strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Alisher Imanov, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD Student

Aigul Kozhas, Department of Technology of Industrial and Civil Construction, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Candidate of Technical Sciences, Senior Lecturer

Assel Mukhamejanova, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD, Senior Lecturer

Aida Nazarova, Department of Physics, Nazarbayev University, Astana, Kazakhstan

PhD, Laboratory Instructor

Dias Kazhimkanuly, Department of Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

PhD Student

References

M. A. Sahin, M. Ali, J. Park, and G. Destgeer, “Fundamentals of Acoustic Wave Generation and Propagation,” in Acoustic Technologies in Biology and Medicine, Wiley, 2023, pp. 1–36. doi: 10.1002/9783527841325.ch1. DOI: https://doi.org/10.1002/9783527841325.ch1

J. E. Greenspon, “Acoustics, Linear,” in Encyclopedia of Physical Science and Technology, Elsevier, 2003, pp. 129–167. doi: 10.1016/B0-12-227410-5/00009-0. DOI: https://doi.org/10.1016/B0-12-227410-5/00009-0

Y. Tao, M. Ren, H. Zhang, and T. Peijs, “Recent progress in acoustic materials and noise control strategies – A review,” Appl Mater Today, vol. 24, p. 101141, Sep. 2021, doi: 10.1016/j.apmt.2021.101141. DOI: https://doi.org/10.1016/j.apmt.2021.101141

D. Habault, “Outdoor Sound Propagation,” in Acoustics, Elsevier, 1999, pp. 121–157. doi: 10.1016/B978-012256190-0/50005-1. DOI: https://doi.org/10.1016/B978-012256190-0/50005-1

F. Zangeneh-Nejad and R. Fleury, “Active times for acoustic metamaterials,” Reviews in Physics, vol. 4, p. 100031, Nov. 2019, doi: 10.1016/j.revip.2019.100031. DOI: https://doi.org/10.1016/j.revip.2019.100031

C. M. Salter et al., “Community Noise, Urbanization, and Global Health: Problems and Solutions,” in Innovating for Healthy Urbanization, Boston, MA: Springer US, 2015, pp. 165–192. doi: 10.1007/978-1-4899-7597-3_8. DOI: https://doi.org/10.1007/978-1-4899-7597-3_8

A. Can et al., “The future of urban sound environments: Impacting mobility trends and insights for noise assessment and mitigation,” Applied Acoustics, vol. 170, p. 107518, Dec. 2020, doi: 10.1016/j.apacoust.2020.107518. DOI: https://doi.org/10.1016/j.apacoust.2020.107518

G. Aydın and S. E. San, “Breaking the limits of acoustic science: A review of acoustic metamaterials,” Materials Science and Engineering: B, vol. 305, p. 117384, Jul. 2024, doi: 10.1016/j.mseb.2024.117384. DOI: https://doi.org/10.1016/j.mseb.2024.117384

A. Hamida, D. Zhang, M. A. Ortiz, and P. M. Bluyssen, “Indicators and methods for assessing acoustical preferences and needs of students in educational buildings: A review,” Applied Acoustics, vol. 202, p. 109187, Jan. 2023, doi: 10.1016/j.apacoust.2022.109187. DOI: https://doi.org/10.1016/j.apacoust.2022.109187

K.-E. Fro/ysa, J. N. Tjo/tta, and S. Tjo/tta, “Linear propagation of a pulsed sound beam from a plane or focusing source,” J Acoust Soc Am, vol. 93, no. 1, pp. 80–92, Jan. 1993, doi: 10.1121/1.405546. DOI: https://doi.org/10.1121/1.405546

M. N. Insanally, B. F. Albanna, and S. Bao, “Pulsed Noise Experience Disrupts Complex Sound Representations,” J Neurophysiol, vol. 103, no. 5, pp. 2611–2617, May 2010, doi: 10.1152/jn.00872.2009. DOI: https://doi.org/10.1152/jn.00872.2009

C. Shen, Y. Xie, J. Li, S. A. Cummer, and Y. Jing, “Acoustic metacages for sound shielding with steady air flow,” J Appl Phys, vol. 123, no. 12, Mar. 2018, doi: 10.1063/1.5009441. DOI: https://doi.org/10.1063/1.5009441

S. Ikeda et al., “Steady Beat Sound Facilitates both Coordinated Group Walking and Inter-Subject Neural Synchrony,” Front Hum Neurosci, vol. 11, Mar. 2017, doi: 10.3389/fnhum.2017.00147. DOI: https://doi.org/10.3389/fnhum.2017.00147

L. Dong, C. Wang, M. Zhang, D. Wang, and X. Liang, “Blended noise suppression using a hybrid median filter, normal moveout and complex curvelet transform approach,” Studia Geophysica et Geodaetica, vol. 64, no. 2, pp. 241–254, Apr. 2020, doi: 10.1007/s11200-020-0269-9. DOI: https://doi.org/10.1007/s11200-020-0269-9

M. Möser, “Fundamentals of Wave Propagation,” in Engineering Acoustics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 13–41. doi: 10.1007/978-3-662-05391-1_2. DOI: https://doi.org/10.1007/978-3-662-05391-1_2

Downloads

Published

2024-06-14

How to Cite

Imanov, A., Kozhas, A., Mukhamejanova, A., Nazarova, A., & Kazhimkanuly, D. (2024). Experimental study of sound wave propagation patterns. Technobius, 4(2), 0057. https://doi.org/10.54355/tbus/4.2.2024.0057

Issue

Section

Articles

Categories