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Abstract. The present study compares the behavior of different sound types and their sources concerning distance. 

Experimental findings demonstrate a consistent reduction in noise levels with increasing distance from the sound origin, 

aligning with anticipated sound propagation patterns. Median noise level reductions are quantified, showing decreases 

from 72.7 dB at the source to 54.8 dB at a distance of 3 m. Pulsed sounds exhibit pronounced fluctuations and peaks at 

close distances, while steady and blended sounds maintain more uniform levels. An exponential model accurately 

characterizes the noise reduction phenomenon (R² = 0.8664), underscoring its applicability for construction noise control. 

These results offer valuable insights into sound propagation dynamics and provide a basis for developing effective noise 

control strategies. 
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1. Introduction 

 

The study of sound wave propagation patterns is important for both basicscience and applied 

fields such as acoustics, structural engineering and ecology [1,2]. Understanding the mechanism of 

sound wave propagation contributes to improving the quality of sound environments, developing 

more effective noise insulation materials and technologies, and optimizing the acoustic performance 

of rooms and open spaces [3–6]. 

In the modern world, the level of noise pollution is constantly increasing, which negatively 

affects the health and well-being of people [3,6]. Problems related to excessive noise are becoming 

more and more relevant in urban and industrial areas, and construction sites [2,4,7]. In this regard, 

accurate data on the behavior of sound waves in different environments are needed to develop 

effective noise control methods and improve acoustic comfort in living and working spaces [8]. 

Despite a significant amount of research in acoustics, there is a lack of data concerning the 

behavior of sound waves in different environments and conditions. Frequently arising questions are 

related to the influence of different types of sound sources and distances on noise levels, which 

requires additional experimental studies and validation of theoretical models [9]. 

A pulsed sound is a sound that occurs in individual rhythmic bursts or pulses. These bursts 

can vary in intensity and frequency, creating a characteristic pattern [10,11]. 

Steady sound, means a constant and unchanging sound without fluctuations or variations in 

amplitude or frequency, which often come from mechanical or environmental sources [12,13].  

A blended sound is a mixture or combination of different sounds occurring simultaneously, 

resulting in a complex auditory experience [14]. 
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Choosing these types of sounds to experiment with allows us to explore different aspects of 

auditory perception and cognition. Impulsive sounds allow precise timing and synchronization of 

events, sustained sounds provide a stable background for comparison, and mixed sounds reflect the 

complexity of actual auditory experience. These diverse types of sounds allow the experiment to be 

designed to reflect the variability of auditory stimuli encountered in everyday life. 

The purpose of this study is to investigate the propagation patterns of sound waves of various 

types under controlled conditions. The study aims to obtain quantitative data on the behavior of sound 

waves and their variation as a function of distance from the sound source. 

In order to achieve the set goal, the following tasks should be solved: 

−  Develop and manufacture experimental racks for equipment placement. 

−  Prepare and set up measuring devices for fixing the sound level. 

−  Conduct a series of experiments with different types of sound sources (pulsed, steady and 

blended). 

−  Collect and analyze data on sound levels at different distances from a source. 

−  Draw conclusions about the patterns of sound wave propagation based on the data 

obtained. 

This study will contribute to the knowledge of sound wave propagation mechanisms and the 

development of effective methods for controlling and managing noise in different environments, 

including construction sites. 

 
2. Methods 

 

2.1 Preparation of experimental racks 

The preparation of experimental racks is a critical step to ensure accurate and consistent data 

collection. For this experiment, specialized racks were designed (Figure 1) and constructed following 

a specific layout to meet the requirements of the study. The racks were crafted from wooden material, 

selected for its durability and ease of manipulation. Each board connection was reinforced using four 

screws on each side, ensuring structural stability and rigidity. The schematic drawing of the racks 

provided precise dimensions for each component (Figure 1). These dimensions were meticulously 

adhered to during the manufacturing process to ensure uniformity across all racks used in the 

experiments. To minimize the influence of external vibrations, particularly from the ground, the 

surfaces of the racks were covered with a 10 mm layer of sponge (Figure 2).  

 

  
Figure 1 – Schematic drawing of the stand for 

the experiment. Board dimensions: 

1 – 150x100x10 mm; 2 – 100x100x10 mm; 

 3 – 120x100x10 mm 

Figure 2 – Experiment stand 
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This cushioning material was chosen for its effectiveness in dampening vibrations, thereby 

ensuring that the measurements taken were not affected by extraneous movement or noise. Four 

identical racks were produced for use in the experiments. 

 

2.2 Placement of racks and equipment 

Proper placement of the racks and equipment was essential to maintain the integrity of the 

experiment. The first rack was strategically positioned directly at the sound source (Figure 3). This 

placement was crucial for capturing the initial sound intensity and variations at the point of origin. 

The remaining racks were placed at intervals of one meter from the sound source, forming a linear 

arrangement. This linear sequence allowed for the systematic measurement of sound intensity at 

increasing distances from the source, providing a clear gradient of sound propagation. 

 

 
Figure 3 – Placement of racks 

 

Each rack was equipped with two key pieces of equipment: 

1. Video Fixation Devices: The upper part of each rack was designated for mounting video 

fixation devices (Figure 4). These devices, fixed on phones, were used to visually document the 

experiment and ensure the precise timing of measurements. 

2. Noise Level Meters: The lower part of each rack was designed to hold UT352 (Figure 4) 

noise level meters. These meters, manufactured by UNI-T, were chosen for their reliability and 

accuracy. They are certified and listed in the Register of Standard Measuring Instruments of the 

Republic of Kazakhstan, ensuring compliance with measurement standards. 

 

 
Figure 4 – Placement of the noise meter on the rack 

 

The careful positioning of these devices was critical for capturing accurate sound levels at 

each specified distance. 
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2.3 Conducting the experiment 

Three different types of sound sources were used during the experiment: 

− Pulsed sound: this involved brief, pulsed sounds designed to simulate sudden noise bursts. 

− Steady sound: this type involved a steady, uninterrupted sound, representing a constant 

noise source. 

− Blended sound: This included complex sounds with varying frequencies and time 

characteristics, simulating more natural and varied noise environments. 

For each type of sound source, measurements were taken over a specific time interval of 5 

seconds. During this interval, the noise level meters recorded the sound intensity at a high sampling 

rate, capturing 8 values per second. This high temporal resolution ensured that even small fluctuations 

in sound intensity were recorded, providing a detailed dataset for analysis. The measurements were 

taken at four different distances from the sound source: at the source (0 meters); 1 meter from the 

source; 2 meters from the source; 3 meters from the source. This setup allowed the researchers to 

observe how sound intensity diminished with distance, a fundamental aspect of sound wave 

propagation. The data collected from these measurements were then analyzed to identify patterns in 

sound propagation and to understand how different types of sounds behave over distance. 

The overall methodology ensured that the experiment was conducted in a systematic and 

controlled manner, allowing for the collection of reliable and accurate data on sound wave 

propagation. The results of this experiment are expected to provide valuable insights into noise 

control and management. 

 
3. Results and Discussion 

 

The experiment was conducted to measure the Sound Pressure Level (SPL) of pulsed, steady, 

and blended sound in decibels (dB) at four posts located at different distances from the sound source. 

Figure 5-7 presents the results of these measurements. 

0: a stand that is directly at the sound source; 1: a stand that is 1 meter away from the source; 

2: a stand that is 2 meters away from the source; 3: a rack that is 3 meters away from the source. 

 

3.1 Pulsed sound in decibels (dB) 

The graph (Figure 5) shows the variation in noise level for each of the 40 measurements: 

− 0 m: noise level varies from 59.7 to 73.3 dB; 

− 1 m: noise level varies from 43.4 to 66.0 dB; 

− 2 m: noise level varies from 40.3 to 65.4 dB; 

− 3 m: noise level varies from 39.6 to 59.9 dB. 

 

 
Figure 5 – Pulsed sound 
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The noise level decreases as the distance from the sound source increases. In all cases, there 

is a general tendency for the noise level to decrease from the beginning to the end of the 

measurements. More pronounced fluctuations and peaks in noise level are observed at the post located 

at the sound source (blue line) compared to the rest of the posts. 

 

3.2 Steady sound in decibels (dB) 

The graph (Figure 6) shows the variation in noise level for each of the 40 measurements: 

− 0 m: noise level varies from 74.3 to 85.5 dB; 

− 1 m: noise level varies from 65.0 to 69.1 dB; 

− 2 m: noise level varies from 62.7 to 65.6 dB; 

− 3 m: noise level varies from 61.0 to 63.4 dB. 

 

 
Figure 6 – Steady sound 

 

The noise concentration decreases as the distance from the sound source increases. The rack 

located directly at the sound source (orange line) shows significant fluctuations in the noise level in 

the middle of the measurements, while at the other racks the noise level remains almost uniform. 

 

3.3 Blended sound in decibels (dB) 

The graph (Figure 7) shows the variation in noise level for each of the 40 measurements: 

− 0 m: noise level varies from 74.3 to 85.5 dB; 

− 1 m: noise level varies from 65.0 to 69.1 dB; 

− 2 m: noise level varies from 62.7 to 65.6 dB; 

− 3 m: noise level varies from 61.0 to 63.4 dB. 

 

 
Figure 7 – Blended sound 

 

Noise intensity decreases with increasing distance from the sound source. Nevertheless, the 

noise level at the measuring stand located directly at the source (orange line) is significantly higher 

than the values recorded at the other stands. In all cases, the noise level is almost evenly distributed. 
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The graph (Figure 8) shows a general trend of decreasing sound level with increasing distance 

from the source, based on median values. The pulsed sound starts at 64.5 dB at 0 meters and decreases 

to 48.1 dB at 3 meters. The steady sound starts at 83.7 dB at a distance of 0 meters and decreases to 

62.4 dB at a distance of 3 meters. The blended sound starts at 69.8 dB at a distance of 0 meters and 

decreases to 53.9 dB at a distance of 3 meters. The average sound starts at about 70 dB at a distance 

of 0 meters and decreases to 55 dB at a distance of 3 meters. The exponential trend line follows the 

average sound points with a strong correlation (R² = 0.8664). 

 

 
Figure 8 – Analysis of sound propagation 

 

The sound level decreases as the distance from the source increases, which is consistent with 

the physical behavior of sound propagation in open space [15]. The exponential decay model agrees 

well with the average sound data, indicating that the decrease in sound level is exponential. The 

coefficient of determination (R² = 0.8664) indicates a good fit of the exponential model to the 

observed data. This analysis provides insight into how sound level decreases with distance, which 

can be useful in construction noise control. 

 
4. Conclusions 

 

In this paper, different types of sounds and their potential sources were investigated as a 

function of distance. Experimental results show a clear decrease in noise level with increasing 

distance from the sound source for pulsed, steady, and blended sounds, which is consistent with the 

expected physical behavior of sound propagation. Numerical values include a median noise level 

reduction from 72.7 dB at the source to 54.8 dB at a distance. Pulsed sounds are observed to exhibit 

greater fluctuations and peaks at close distances, with the median level starting at 70.4 dB and 

decreasing to 59.9 dB. Steady and blended sounds have more uniform noise levels, with steady sounds 

decreasing from 66 dB to 56.7 dB and blended sounds decreasing from 65.4 dB to 59.2 dB. The 

exponential model accurately describes noise reduction with a high coefficient of determination (R² 

= 0.8664), which emphasizes its applicability for construction noise control. 
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