Vibro-pressed concrete for wall blocks based on lightweight expanded clay aggregate obtained with the addition of oil sludge
DOI:
https://doi.org/10.54355/tbus/5.4.2025.0090Keywords:
expanded clay aggregate, oil sludge additive, vibro-pressing, lightweight aggregate concrete, thermal insulation wall blocksAbstract
This study develops lightweight expanded clay aggregate (LECA) from local low-expanding loams using an oil-sludge-based fuel-containing additive and evaluates its use in vibro-pressed lightweight aggregate concrete (LWAC) wall blocks. LECA was produced by granulation and firing, then characterized by bulk density, water absorption, and compressive strength. LWAC blocks were manufactured via a semi-dry vibro-pressing route and tested for density, compressive strength, thermal conductivity, and freeze-thaw resistance. The LECA incorporating oil sludge showed a strength increase from 1.38 MPa to 2.8-3.1 MPa with a moderate density rise (316 to 350-400 kg/m3) while maintaining ~25.8% water absorption. Blocks achieved 800-950 kg/m3 density and 10-12 MPa compressive strength, with 0.75-0.8 W/(m·K) thermal conductivity and 50-75 freeze-thaw cycles. XRD pattern fitting indicated silicate- and spinel-type crystalline phases, though some matches require verification. Overall, the raw material and processing route enable structural wall units with improved thermal performance. The future work should prioritize moisture-related durability under higher saturation.
Downloads
Metrics
References
L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy and Buildings, vol. 40, no. 3, pp. 394–398, 2008, doi: 10.1016/j.enbuild.2007.03.007. DOI: https://doi.org/10.1016/j.enbuild.2007.03.007
M. Niziurska, M. Wieczorek, and K. Borkowicz, “Fire Safety of External Thermal Insulation Systems (ETICS) in the Aspect of Sustainable Use of Natural Resources,” Sustainability, vol. 14, no. 3, p. 1224, Jan. 2022, doi: 10.3390/su14031224. DOI: https://doi.org/10.3390/su14031224
B. Zhou, H. Yoshioka, T. Noguchi, and T. Ando, “Experimental study of expanded polystyrene (EPS) External Thermal Insulation Composite Systems (ETICS) masonery façade reaction-to-fire performance,” Thermal Science and Engineering Progress, vol. 8, pp. 83–92, Dec. 2018, doi: 10.1016/j.tsep.2018.08.002. DOI: https://doi.org/10.1016/j.tsep.2018.08.002
M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, “Influence of horizontal joint on the thermal properties of single-leaf walls with lightweight clay blocks,” Energy and Buildings, vol. 49, pp. 362–366, June 2012, doi: 10.1016/j.enbuild.2012.02.033. DOI: https://doi.org/10.1016/j.enbuild.2012.02.033
K.-C. Thienel, T. Haller, and N. Beuntner, “Lightweight Concrete - From Basics to Innovations,” Materials, vol. 13, no. 5, p. 1120, Mar. 2020, doi: 10.3390/ma13051120. DOI: https://doi.org/10.3390/ma13051120
A. M. Rashad, “Lightweight expanded clay aggregate as a building material – An overview,” Construction and Building Materials, vol. 170, pp. 757–775, May 2018, doi: 10.1016/j.conbuildmat.2018.03.009. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.009
K.-H. Kim, S.-E. Jeon, J.-K. Kim, and S. Yang, “An experimental study on thermal conductivity of concrete,” Cement and Concrete Research, vol. 33, no. 3, pp. 363–371, Mar. 2003, doi: 10.1016/S0008-8846(02)00965-1. DOI: https://doi.org/10.1016/S0008-8846(02)00965-1
K. S. Chia and M.-H. Zhang, “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete,” Cement and Concrete Research, vol. 32, no. 4, pp. 639–645, Apr. 2002, doi: 10.1016/S0008-8846(01)00738-4. DOI: https://doi.org/10.1016/S0008-8846(01)00738-4
J. A. Bogas, A. Gomes, and M. F. C. Pereira, “Self-compacting lightweight concrete produced with expanded clay aggregate,” Construction and Building Materials, vol. 35, pp. 1013–1022, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.111. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.111
S. Real, J. A. Bogas, M. D. G. Gomes, and B. Ferrer, “Thermal conductivity of structural lightweight aggregate concrete,” Magazine of Concrete Research, vol. 68, no. 15, pp. 798–808, Aug. 2016, doi: 10.1680/jmacr.15.00424. DOI: https://doi.org/10.1680/jmacr.15.00424
M. Bernhardt, H. Justnes, H. Tellesbø, and K. Wiik, “The effect of additives on the properties of lightweight aggregates produced from clay,” Cement and Concrete Composites, vol. 53, pp. 233–238, Oct. 2014, doi: 10.1016/j.cemconcomp.2014.07.005. DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.005
S. N. Monteiro and C. M. F. Vieira, “Effect of oily waste addition to clay ceramic,” Ceramics International, vol. 31, no. 2, pp. 353–358, Jan. 2005, doi: 10.1016/j.ceramint.2004.05.002. DOI: https://doi.org/10.1016/j.ceramint.2004.05.002
J. D. Martínez, S. Betancourt-Parra, I. Carvajal-Marín, and M. Betancur-Vélez, “Ceramic light-weight aggregates production from petrochemical wastes and carbonates (NaHCO3 and CaCO3) as expansion agents,” Construction and Building Materials, vol. 180, pp. 124–133, Aug. 2018, doi: 10.1016/j.conbuildmat.2018.05.281. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.281
C. Burbano-Garcia, A. Hurtado, Y. F. Silva, S. Delvasto, and G. Araya-Letelier, “Utilization of waste engine oil for expanded clay aggregate production and assessment of its influence on lightweight concrete properties,” Construction and Building Materials, vol. 273, p. 121677, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121677. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121677
Z. Xing, C. Djelal, Y. Vanhove, and H. Kada, “Wood Waste in Concrete Blocks Made by Vibrocompression,” Environ. Process., vol. 2, no. S1, pp. 223–232, Nov. 2015, doi: 10.1007/s40710-015-0104-4. DOI: https://doi.org/10.1007/s40710-015-0104-4
E. Widayanto, A. Soehardjono, W. Wisnumurti, and A. Zacoeb, “The effect of vibropressing compaction process on the compressive strength based concrete paving blocks,” AIMS Materials Science, vol. 7, no. 3, pp. 203–216, 2020, doi: 10.3934/matersci.2020.3.203. DOI: https://doi.org/10.3934/matersci.2020.3.203
L. Dvorkin, V. Zhitkovsky, and Y. Ribakov, “Design of Technological Parameters for Vibrocompression of Gypsum Concrete,” Materials, vol. 18, no. 16, p. 3902, Aug. 2025, doi: 10.3390/ma18163902. DOI: https://doi.org/10.3390/ma18163902
F. Zhang, T. H. Tan, S. S. Sinoh, C.-C. Hung, and K. H. Mo, “Interaction of various parameters on the properties of semi-dry gypsum-based blocks produced by compression forming method,” Construction and Building Materials, vol. 411, p. 134479, Jan. 2024, doi: 10.1016/j.conbuildmat.2023.134479. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134479
GOST 33126-2014 Expanded clay concrete blocks. Specifications. Moscow, Russia: Standardinform, 2015.
GOST 31108-2016 Common cements. Specifications. Moscow, Russia: Standardinform, 2019.
GOST 8736-2014 Sand for construction works. Specifications. Moscow, Russia: Standardinform, 2019.
GOST 32496-2013 Fillers porous for light concrete. Specifications. Moscow, Russia: Standardinform, 2014.
K. A. Bisenov, S. A. Montaev, R. A. Narmanova, and N. O. Appazov, “Ekologo-ekonomicheskie perspektivy ispolzovaniya nefteshlamov v sostave keramzita,” Science News of Kazakhstan, vol. 132, no. 2, pp. 79–89, 2017.
K. A. Bisenov, R. A. Narmanova, S. A. Montaev, and N. O. Appazov, “Resursosberegayushie tehnologii effektivnoj utilizacii othodov neftedobychi,” Oil and Gas, vol. 99, no. 3, pp. 128–138, 2017.
Published
How to Cite
License
Copyright (c) 2025 Roza Narmanova, Kylyshbai Bissenov, Nargul Saktaganova, Sergiy Lyubchyk, Nurlybek Kelmagambetov

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.