Study of the causes of the collapse of a high-rise chimney under conditions of long-term operation

Authors

  • Valentin Mikhailov Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan https://orcid.org/0000-0002-2588-9438
  • Serik Akhmediyev Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan https://orcid.org/0000-0003-4393-3559
  • Daniyar Tokanov Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan https://orcid.org/0000-0001-5811-3639
  • Nikolai Vatin Director of the Scientific and Technological Complex «Digital Engineering in Civil Engineering», Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation https://orcid.org/0000-0002-1196-8004
  • Zhmagul Nuguzhinov Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan https://orcid.org/0000-0002-0252-2115
  • Askhat Rakhimov Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan https://orcid.org/0000-0002-6645-748X

DOI:

https://doi.org/10.54355/tbus/4.2.2024.0060

Keywords:

chimney, industrial buildings and structures, technical inspection, reliability, calculations, physical wear, reliability and stability, defects and damages

Abstract

This article analyzes the causes of the collapse of a high-rise chimney in Petropavlovsk. A study of the factors of long-term (over 60 years) operation of a high-altitude (H=150 m) chimney was carried out. The analysis of the constructive solution of the pipe was carried out, and the study of the operating conditions was performed. To theoretically assess the technical condition and stress-strain state factors (SSS) of the collapsed chimney, automated verification calculations were carried out based on the actual parameters and characteristics obtained during the last technical inspection. An automated verification calculation of SSS factors determining the bearing capacity of an object (its strength, rigidity, reliability, and durability) has been performed. Theoretically, the physical wear of the object has also been carried out. Based on the study of the available technical documentation and conducting a continuous, detailed instrumental examination of the facility, the expert organization established the significant causes that led to the pipe accident.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Valentin Mikhailov, Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Candidate of Technical Sciences, Associate Professor

Serik Akhmediyev, Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Candidate of Technical Sciences, Professor

Daniyar Tokanov, Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Candidate of Technical Sciences, Senior Lecturer

Nikolai Vatin, Director of the Scientific and Technological Complex «Digital Engineering in Civil Engineering», Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

Doctor of Technical Sciences, Professor

Zhmagul Nuguzhinov, Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Doctor of Technical Sciences, Professor

Askhat Rakhimov, Department of Mechanics, Faculty of Architecture and Civil Engineering, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

PhD, Senior Lecturer

References

A. Andreozzi, B. Buonomo, and O. Manca, “Thermal and fluid dynamic behaviors in symmetrical heated channel‐chimney systems,” Int J Numer Methods Heat Fluid Flow, vol. 20, no. 7, pp. 811–833, Sep. 2010, doi: 10.1108/09615531011065584. DOI: https://doi.org/10.1108/09615531011065584

P. Adler and G. Hirsch, “Dämpfung winderregter Schwingungen von Stahlschornsteinen in Gruppenanordnung,” Bautechnik (Berlin, 1984), vol. 53, no. 7, pp. 223–228, 1986.

E. V. Yablonko, “Osnovnye problemy v ekspluatacii dymovyh trub,” Molodoy Uchenyi, vol. 9, no. 32, pp. 65–68, 2011.

A. S. Zhakulin, A. A. Zhakulina, A. U. Yessentayev, E. N. Abdygaliyev, and E. K. Imanov, “Changes in the stress-strain state of soils with changes in humidity,” in Smart Geotechnics for Smart Societies, London: CRC Press, 2023, pp. 1216–1221. doi: 10.1201/9781003299127-175. DOI: https://doi.org/10.1201/9781003299127-175

A. V. Filatov, A. S. Zhakulin, A. A. Zhakulina, P. A. Kropachev, S. S. Kuzmichev, and A. U. Yessentayev, “Investigation of soils on the base of a reinforced concrete chimney,” in Smart Geotechnics for Smart Societies, London: CRC Press, 2023, pp. 1439–1442. doi: 10.1201/9781003299127-213. DOI: https://doi.org/10.1201/9781003299127-213

E. Ibragimov and S. Cherkasov, “Improving the efficiency of power boilers by cooling the flue gases to the lowest possible temperature under the conditions of safe operation of reinforced concrete and brick chimneys of power plants,” MATEC Web of Conferences, vol. 245, p. 07014, Dec. 2018, doi: 10.1051/matecconf/201824507014. DOI: https://doi.org/10.1051/matecconf/201824507014

R. A. Chistov and N. V. Zhuravleva, “Osnovnye problemy dymovyh trub i metody ih ustraneniya,” Vestnik magistratury, vol. 5–3, no. 104, pp. 1432–1442, 2020.

“Unscented Kalman Filter for the identification of passive control devices,” in Research and Applications in Structural Engineering, Mechanics and Computation, CRC Press, 2013, pp. 59–60. doi: 10.1201/b15963-17. DOI: https://doi.org/10.1201/b15963-17

B. Zamora, “Morphological comparative assessment of a rooftop solar chimney through numerical modeling,” Int J Mech Sci, vol. 227, p. 107441, Aug. 2022, doi: 10.1016/j.ijmecsci.2022.107441. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107441

A. Habibollahzade, E. Houshfar, M. Ashjaee, and K. Ekradi, “Continuous power generation through a novel solar/geothermal chimney system: Technical/cost analyses and multi-objective particle swarm optimization,” J Clean Prod, vol. 283, p. 124666, Feb. 2021, doi: 10.1016/j.jclepro.2020.124666. DOI: https://doi.org/10.1016/j.jclepro.2020.124666

Ł. Amanowicz, K. Ratajczak, and E. Dudkiewicz, “Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review,” Energies (Basel), vol. 16, no. 4, p. 1853, Feb. 2023, doi: 10.3390/en16041853. DOI: https://doi.org/10.3390/en16041853

V. A. Akatiev, “Problemnye zadachi v upravlenii strategicheskimi riskami,” Scientific notes of the RGSU, no. 7, pp. 115–119, 2010.

O. A. Karetnikova, “Issledovanie prichin avarijnosti promyshlennyh dymovyh trub,” Unikal’nye issledovaniya XXI veka, no. 8, pp. 67–71, 2015.

A. A. Aleksandrov, S. P. Sushchev, V. A. Akatiev, V. I. Larionov, and E. V. Metelkin, “Vnutritrubnaya defektoskopiya funkcioniruyushchej promyshlennoj dymovoj truby,” Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, vol. 6, no. 111, pp. 128–134, 2016.

A. A. Aleksandrov, V. A. Akatiev, V. I. Larionov, S. P. Sushchev, and L. V. Volkova, “Povyshenie effektivnosti kontrolya dymovyh trub s pomoshch’yu avtonomnogo apparata,” Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, vol. 1, no. 112, pp. 24–40, 2017.

Z. S. Zou, J. Yang, Z. Y. Chen, and C. L. He, “Synchronized Blasting Demolition of Workshop and Chimney Under Complicated Conditions,” The Open Civil Engineering Journal, vol. 11, no. 1, pp. 726–736, Sep. 2017, doi: 10.2174/1874149501711010726. DOI: https://doi.org/10.2174/1874149501711010726

Yu. N. Barannikov, I. F. Safin, S. A. Davydenko, M. A. Kostrovsky, and O. A. Bratygin, “Obsledovanie tekhnicheskogo sostoyaniya sooruzheniya na opasnom proizvodstvennom ob"ekte na primere kirpichnoj dymovoj truby vysotoj 45,0 metrov, ustanovlennoj na territorii kotel’noj,” Aktual’nye problemy gumanitarnyh i estestvennyh nauk, no. 12–2, pp. 14–19, 2015.

M. Sykora, J. Markova, J. Mlcoch, J. Molnar, and K. Presl, “Predicting Service Life of Chimneys and Cooling Towers Based on Monitoring,” in High Tech Concrete: Where Technology and Engineering Meet, Cham: Springer International Publishing, 2018, pp. 1671–1679. doi: 10.1007/978-3-319-59471-2_192. DOI: https://doi.org/10.1007/978-3-319-59471-2_192

M. Minch and A. Trochanowski, “Selected problems of damage analysis of heat and power plant RC chimneys,” Prace Naukowe Instytutu Budownictwa Politechniki Wroclawskiej, vol. 70, pp. 179–180, 1998.

Tehnicheskoe zaklyuchenie. Karaganda: KazMIRR, 2022.

G.A. Poryvay, Preduprezhdenie prezhdevremennogo iznosa zdanij. Moscow: Stroyizdat, 1979.

G. Augusti, A. Baratta, and F. Casciati, Veroyatnostnye metody v stroitel’nom proektirovanii. Moscow: Stroyizdat, 1988.

N. Dreiper and G. Smit, Prikladnoj regressionnyj analiz. Moscow: Stroyizdat, 1988.

S. A. Ayvazyan and V. S. Mkhitaryan, Prikladnaya statistika i osnovy ekonometriki. Moscow: Izdatel’stvo “Yuniti,” 2001.

Downloads

Published

2024-06-30

How to Cite

Mikhailov, V., Akhmediyev, S., Tokanov, D., Vatin, N., Nuguzhinov, Z., & Rakhimov, A. (2024). Study of the causes of the collapse of a high-rise chimney under conditions of long-term operation. Technobius, 4(2), 0060. https://doi.org/10.54355/tbus/4.2.2024.0060

Issue

Section

Articles

Categories

Most read articles by the same author(s)