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Abstract. This study develops and validates a method for real-time monitoring and structural integrity assessment of 

reinforced concrete facilities in Karaganda, Kazakhstan, integrating finite element modeling (FEM), machine learning 

(ML), and digital signal processing (DSP). Three pilot objects were analyzed: a three-span bridge, an 18-storey residential 

building, and a reinforced concrete highway section. FEM models built in ANSYS 2024 R1 were linked with calibrated 

sensor networks (strain gauges, accelerometers, thermocouples, tiltmeters, weather stations). Data processing was 

performed in MATLAB and SciPy, with ridge regression models (R² ≈ 0.85) used for defect prediction. Results showed 

close correspondence between calculations and measurements: deviations of 2% for the bridge (r = 0.98) and 4% for the 

building (r = 0.95) met the ≤5% accuracy target. The road section produced a 25% error (r = 0.90), mainly due to frost 

heave and heterogeneous traffic. Cost–benefit analysis indicated net efficiency within five years, with cumulative savings 

of 110–120 million KZT versus 67 million KZT in costs. The findings confirm the effectiveness of integrated digital 

monitoring for preventive maintenance, though further validation in different climates and materials is required. 

Keywords: reinforced concrete structures, defects, operation, finite element method, sensor. 

 
1. Introduction 

 

Structural health monitoring (SHM) uses sensor networks and computational methods to 

enable early damage detection and prevent accidents. The durability of reinforced concrete structures 

is critical for the safety and economy of regions. In this study, we combine finite element modeling 

(FEM), machine learning (ML), and digital signal processing (DSP) to analyze large streams of 

monitoring data and to predict stress–strain states under real operating conditions. The approach relies 

on calibrated sensor networks (strain, acceleration, temperature, tilt) and standardized material 

properties, with model–data synchronization ensuring that computational predictions are directly 

comparable to field measurements. 

Traditional visual and mechanical inspections are labor-intensive and often miss hidden 

defects [1]. The transition to digital sensors has reduced subjectivity, but the data remains fragmented, 

and the models poorly reflect real operating conditions, especially with sharp temperature fluctuations 

and high traffic. 

Mehta M. showed that manual surveys underestimate deep cracks, increasing the risk of costly 

reconstructions [2]. [3] improved the prediction of crack formation in RC beams by 30% relative to 

regression using neural networks, but did not take into account temperature drift. [4] combined FEM 

and topology optimization for bridge trusses, correctly predicting the redistribution of forces, 

although the model was not tested in situ. [5] applied FEM in the construction of a suspension bridge, 

identifying risk zones of cables, but synchronization with field data was performed manually. [6] 

trained a Gaussian process on data from 76 bridges to assess the residual life, requiring a dense 

observation grid. [7] developed a UAV crack detection method with a Laplace-Gauss filter (94% 
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accuracy) sensitive to illumination. Common unsolved problems include: accurate matching of 

calculated and field data, consideration of seasonal factors, and assessment of the economic efficiency 

of complex systems. 

Despite the progress made, there is still no single platform that simultaneously integrates 

FEM, machine learning, and DSP in real time, provides a deviation between calculation and 

measurement of no more than 5% for different types of objects, and demonstrates a return on 

investment over a five-year horizon for regional infrastructure. 

The combination of FEM models, regression methods, and frequency algorithms with a 

calibrated sensor network provides prediction of critical stresses and early defects of reinforced 

concrete structures in the Karaganda region under real operating and climatic conditions, thereby 

reducing total maintenance costs to an economically acceptable level. 

This study aims to design and field-validate an integrated structural health monitoring 

workflow that combines FEM, ML, and DSP for bridges, high-rise buildings, and pavements in the 

Karaganda region. The workflow includes calibrated FEM models, a GPS-synchronized sensor 

network, standardized signal-processing and feature-extraction steps, and ridge–regression–based 

prediction. Its performance is evaluated by comparing model outputs with measurements on three 

pilot objects, reporting MAPE, standard deviation, and Pearson’s r with 95% confidence intervals, 

and by conducting a five-year cost–benefit analysis. The paper reports the achieved accuracy for the 

bridge and building, analyzes the larger road error and its causes, and outlines practical 

improvements; broader applicability is addressed in the Limitations section. 

 
2. Methods 

 

The procedures are presented step by step – from the description of materials through 

numerical modeling and sensor network configuration to signal processing and statistical analysis - 

which guarantees the reproducibility of the experiment. Specific values of material properties (e.g., 

elastic modulus or density) are not duplicated: they are given in the relevant standards and technical 

data sheets. 

Table 1 presents the considered study areas and materials. 

 

Table 1 – Study areas and materials 
Study area Structural system Concrete 

grade* 

Steel 

grade* 

Reference drawings 

Bridge across the Sarysu River Three-span girder 

bridge 

B30 A500C Karaganda City Transport 

Dept., 2012 

18-storey residential building 

(rail-station district) 

Reinforced-concrete 

frame with shear walls 

B25 A400 “KazGor” Design Institute, 

2008 

RC-surfaced highway section 

Karaganda–Temirtau (km 14–18) 

Continuously-

reinforced pavement 

B35 

(overlay) 

- KazAutoZhol, 2020 

*Material specifications conform to GOST 26633-2015 for concrete and GOST 5781-82 for reinforcing steel 

 

All FEM calculations were performed in ANSYS 2024 R1 in double-precision mode; pre- and 

post-processing were automated by Python 3.12 scripts via the PyANSYS API. In the bridge model, 

the slab and supports are described by SOLID186 elements, the railings — SHELL181; the grid step 

is 0.25 m, and the convergence is confirmed by energy (≤ 5%). The bearing pads are modeled by 

COMBIN14 springs with a stiffness of k = 120 MN m⁻¹ [8], the loads include their own weight and 

the equivalent of the HL-93 automobile load according to AASHTO [5]. In the building model, the 

walls are specified by SHELL181, the columns and beams — BEAM188; constant vertical loads and 

a payload of 0.5 kPa according to SN RK 2.03-30-2019 were taken into account, the wind pressure 

was taken as 0.38 kPa (II wind region) [9]. The road surface was modeled using a layer-by-layer 

elastic scheme on PLANE182 according to [10]; the moving axial load was specified by temporary 

pressure spots with a step of 10 Hz, and the temperature gradient of −15…+40 °C was entered using 

the *LDREAD command. Stresses σ were reconstructed at the Gauss points, deformations ε were 
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obtained using the relationship ε = Bu [8]. Although the numerical values are presented in the Results 

section, the visual distribution of stresses is shown here for clarity. Figure 1 presents representative 

FEM contour plots for the bridge, building, and road models, highlighting the zones of maximum 

stress concentration and confirming the correctness of the modeling procedure. 

 

 
Figure 1 – FEM contour plots of stress distribution in bridge, building, and road models 

 

Figure 1 shows typical stress concentration zones: in the bridge, they are concentrated in the 

nodes of supports and span slabs, in the building, in the places of connection of columns and load-

bearing walls, and in the road structure, in the area of application of the wheel load. The visual 

coincidence of these zones with the sensor readings confirms the correctness of the constructed 

models and the applied methodology. 

Table 2 presents the sensor network and data collection tools used. 

 

Table 2 – Sensor network and data acquisition 
Parameter Sensor (model) Range Sampling freq. 

Strain (bridge, building) Vishay CEA-06-250UW-350 ±5 000 µε 100 Hz 

Strain (pavement) Geokon 4200 ±3 000 µε 10 Hz 

Vibration Brüel & Kjær 4371 ICP® 0.1–8 000 Hz 500 Hz 

Tilt GeoSIG biaxial tiltmeter ±5° 1 Hz 

Temperature OMEGA PT100 (class A) −50 … +250 °C 1 Hz 

Wheel load Kistler 9272 piezo-quartz 0–120 kN 2 kHz 

Weather Campbell CR1000 see manual 1 min 

 

The sensors were fixed with epoxy glue according to ASTM E251-92; measurements were 

recorded by NI cRIO-9045 loggers synchronized by GPS (±1 μs), and raw data were stored in TDMS 

format. 

Signal processing was performed in MATLAB R2024b (Signal Processing Toolbox) and 

SciPy 1.13; filtering was performed with a fourth-order Butterworth filter with bands of 0.5–200 Hz 

for the bridge and building and 0.1–50 Hz for the road. Frequency analysis was performed with FFT 

(scipy.fft.rfft) with a resolution of 0.1 Hz. For machine learning, features of peak strains, RMS 

accelerations, and FFT amplitudes ≤ 100 Hz were used; the model was ridge regression (α = 1.0) on 

2000 labeled observations in scikit-learn 1.5 [11]. The input data were scaled by z-score, and 

hyperparameters were optimized by 5-fold cross-validation. 

Statistical analysis was performed in R 4.3.2 (packages stats, psych), using the MAPE (Eq. 

(1)), Standard Deviation (Eq. (2)), and Pearson correlation (Eq. (3)) methods. 
1

𝑛
∑ |

𝑥𝑖−𝑦𝑖

𝑥𝑖
|𝑛

𝑖=1 ∙ 100%                                                           (1) 

𝑠 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1                                                          (2) 

 𝑟 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

(𝑛−1)𝑠𝑥𝑠𝑦
                                                               (3) 

95% confidence intervals for r were calculated using Fisher's z-transformation. 
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3. Results and Discussion 

 

Table 3 shows the results of the comparison of the calculated FEM model with strain gauge 

readings. 

Table 3 – Errors and agreement statistics (bridge) 

Metric Value Metric Value 

Average error, % 2 

Standard deviation, Pa 52.2 

Correlation coefficient r 0.98 

 

The average error is 2%, indicating almost complete agreement between the calculated and 

measured stresses; the small standard deviation confirms the narrow spread of the data. The 

correlation coefficient of 0.98 demonstrates a clear linear relationship between the FEM model results 

and field observations. The highest stresses are found at the beam-support nodes, and numerical 

modeling predicts an additional increase of 10–12% with increasing traffic and temperatures in the 

warm season. The obtained accuracy is consistent with the results of [5], where the discrepancy did 

not exceed 3%; the lower σ (52 Pa) is explained by the constant GPS synchronization of the sensors, 

which was absent in that study. 

The summary comparison data for multi-storey residential buildings are presented in Table 4. 

 

Table 4 – Errors and consistency statistics (buildings) 

Metric Value Metric Value 

Average error, % 4 

Standard deviation, Pa 141 

Correlation coefficient r 0.95 

 

The error < 5% confirms the sufficient accuracy of the models, but the increase in σ to 141 Pa 

is associated with variable operational loads. With the growth of useful loads and aging of the 

material, the calculations predict an increase in axial stresses of the load-bearing walls by 2–5%, and 

the tilt sensors record a gradual tilt of the two towers. The obtained correlation value (r = 0.95) 

coincides with the data of [3], but our average error is lower (4% versus 6%), which is explained by 

the integration of FEM and ML, rather than the sequential application of the methods. 

The accuracy indicators of the Karaganda – Temirtau highway are given in Table 5. 

 

Table 5 – Errors and consistency statistics (road) 

Metric Value Metric Value 

Average error, % 25 

Standard deviation, Pa 1187.5 

Correlation coefficient r 0.90 

 

The average error of 25% and high σ reflect diurnal variations in loads and temperatures; FFT 

analysis revealed a stable 50 Hz component associated with plate resonance, and the areas with the 

highest amplitude coincide with the cracking zone; despite the high correlation r = 0.90, the scatter 

exceeds the results of [6] (MAPE ≈ 15%), which is explained by the harsher climatic conditions and 

mixed traffic of continental Kazakhstan. 

To ensure the statistical reliability of the presented indicators, 95% confidence intervals were 

additionally calculated using Fisher’s z-transformation for correlation coefficients and bootstrapping 

(n = 1,000 resamples) for MAPE and σ values. For the bridge, the 95% CI for r was [0.96; 0.99], for 

the building [0.93; 0.97], and for the road [0.87; 0.92]. The uncertainty of MAPE values did not 

exceed ±0.8% for the bridge, ±1.2% for the building, and ±4.5% for the road, confirming that the 

observed trends remain statistically robust despite environmental variability. 
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Figure 2 shows a histogram of average errors: bridge - 2%, building - 4%, road - 25%; errors 

increase monotonically with increasing complexity of the external environment, which confirms the 

conclusions of [4] about the degradation of accuracy with increasing climatic and operational 

influences. 

 

 
Figure 2 – Average Errors by Structure (blue bars) 

 

The diagram in Figure 2 shows a stepwise increase in the error: from the bridge (2%) to 

residential buildings (4%) and then to the road (25%), which reflects the increase in the uncertainty 

of the calculations as the complexity of the operating environment increases; for the bridge and 

buildings, the accuracy is maintained ≤5% due to the relative stability of loads and microclimate, 

while extreme temperature changes and irregular axle loads on the road cause a quadratic increase in 

discrepancies; this trend confirms the findings of [4] on the degradation of the accuracy of FEM 

forecasts with increasing climatic and traffic impacts, and emphasizes the need for adaptive models: 

for bridges and buildings, the current configuration of sensors and computational schemes is 

sufficient, and for road surfaces, it is necessary to expand the measurement grid and complicate the 

numerical calculation, including temperature and traffic submodels. 

The obtained error of 25% for the Karaganda–Temirtau road section indicates that, under 

current conditions, the model is not yet sufficiently reliable for long-term predictions. However, 

several strategies can reduce this discrepancy. First, increasing the density of the pavement sensor 

grid will allow better capturing of temperature gradients and local deformations. Second, introducing 

a submodel of frost heave and seasonal soil movements into the FEM scheme can address the 

continental climatic factors specific to Kazakhstan. Third, separating the traffic loads by axle groups 

(passenger cars, medium trucks, heavy trucks) and training machine learning algorithms on these 

disaggregated datasets will improve the predictive capability. Fourth, periodic recalibration of strain 

gauges and accelerometers in extreme temperature cycles will minimize measurement drift. Together, 

these measures will significantly reduce errors in road infrastructure models and align them with the 

≤10–15% accuracy level achieved in similar studies [6]. 

In addition to these measures, special attention should be given to two critical factors for the 

continental climate of Kazakhstan: frost heave and heterogeneous traffic. Frost heave can be modeled 

through the introduction of a thermo-hydro-mechanical submodel within the FEM scheme, explicitly 

simulating soil freezing-thawing cycles, moisture migration, and their impact on pavement stiffness. 

For mixed traffic, disaggregated stochastic load models should be developed, where passenger cars, 

medium trucks, and heavy trucks are represented as separate random processes with specific axle 

configurations, speeds, and load spectra. Coupling these submodels with machine learning algorithms 

will allow the system to dynamically recalibrate forecasts, better capture seasonal nonlinearities, and 

reduce the observed 25% discrepancy for highways. 

Figure 3 shows the open work windows of MATLAB R2024b (filtering and FFT) and VS 

Code running a Python script using SciPy and scikit-learn. 
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Figure 3 – Integrated analysis workspace 

 

Dual window: MATLAB on the left shows the signal after the Butterworth filter and its FFT, 

and VS Code on the right shows a Python script with SciPy filtering and scikit-learn ridge regression, 

confirming that raw data, spectral features, and ML modeling are performed in a single workflow; 

instant visualization of MATLAB plots shows a “clean” signal in the passband and a dominant low-

frequency peak, confirming the correctness of the filter parameters and highlighting the resonance 

component used further as a feature in the ML model; script automation via the Python console 

outputs a cross-validation score of ≈ 0.855, showing that the quality of the model is assessed in real 

time and corresponds to R² ≈ 0.85 from the Results section; The compatibility of the tools is 

demonstrated by the ability to run MATLAB (commercial) and Python (open-source) on the same 

PC, which increases reproducibility and allows researchers to repeat DSP steps in any environment 

and compare the results. 

Figure 3 shows a seamless signal processing + machine learning chain in which engineers 

filter, transform, and model monitoring data without changing context; this integration ensured low 

errors for the bridge and buildings and identified the need for improvements for the road surface. 

The integrated discussion shows that for the bridge and buildings, the accuracy condition ≤ 

5% confirms the high efficiency of the FEM + ML + DSP approach; the low σ on the bridge is related 

to the dense sensor network, according to [5], while the sparse network on the road requires further 

refinement. Ridge regression with R² = 0.85 reliably ranks the damage risk, and the frequency peak 

at 50 Hz confirms the laboratory resonant cracking [11], [12]. The five-year payback horizon of the 

digital approach is consistent with [7] calculations for UAV inspection. The largest discrepancies on 

the road are due to frost heave and mixed traffic; further studies should include a climate submodel 

and an extended ML dataset. 

A more detailed economic analysis was performed to substantiate the five-year ROI claim. 

The cost structure includes: initial installation of sensors and loggers (≈ 42 million KZT for three 

pilot sites), annual calibration and maintenance (≈ 4.5 million KZT), and data processing/software 

licenses (≈ 3.2 million KZT per year). Expected benefits are expressed in avoided repair costs and 

reduced downtime: early crack detection in bridges and high-rise buildings reduces unplanned repair 

expenditures by ≈ 15–20%, while optimized maintenance scheduling for road pavements saves ≈ 8–

12% annually. In monetary terms, this corresponds to cumulative savings of ≈ 110–120 million KZT 

over five years, which outweighs the total deployment cost (≈ 67 million KZT). In addition, risk 

mitigation (accident prevention, service continuity) provides indirect benefits that are harder to 

quantify but significant for policymakers. 

 
4. Conclusions 

 

The combined use of FEM, digital signal processing, and machine learning methods made it 

possible to achieve average deviations of only 2% for the bridge structure and 4% for high-rise 

buildings with a correlation coefficient r of at least 0.95, thereby meeting the required accuracy limit 

of ≤ 5%. The error on the road section was 25%, and with the increasing complexity of climatic 
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conditions and transport loads, it steadily increases, which indicates the need to implement adaptive 

models for open infrastructure systems. 

The results confirmed that the integrated platform combining FEM, sensor monitoring, 

machine learning, and digital signal processing enables real-time detection of critical stresses and 

early defects in reinforced concrete structures, thereby addressing the research gap noted in the 

introduction. 

The achieved precision opens the way to preventive maintenance: in the case of bridges and 

high-rise buildings, to strengthen in advance the nodes where an increase in loads is expected, and 

for the road surface, to rank sections according to the degree of wear and adjust the repair schedule. 

The accuracy of the road model is reduced due to the excluded effects of frost heave and 

combined traffic flow; in addition, regular calibration of the sensors and expansion of the 

measurement network are necessary. To overcome the current 25% error level for highways, it is 

necessary to combine technical and computational improvements: 1) Expansion of the sensor grid 

across the pavement; 2) Integration of seasonal frost heave and moisture submodels into FEM; 3) 

Refinement of traffic loading schemes; 4) Systematic sensor recalibration. 

In particular, frost heave can be addressed by introducing a thermo-hydro-mechanical 

submodel into FEM, explicitly simulating freeze–thaw cycles, moisture migration, and stiffness 

variations of the pavement structure. For mixed traffic, stochastic axle-load models should be 

incorporated, where passenger cars, medium trucks, and heavy trucks are represented as separate 

random processes with their own spectra of axle configurations and speeds. Coupling these 

submodels with machine learning will enable dynamic recalibration of forecasts and better capture 

seasonal nonlinearities, thereby reducing discrepancies for highways to a practically acceptable range 

of ≤10–15%. 

The reliability of the obtained results is strengthened by confidence intervals and uncertainty 

estimates, which confirm that the accuracy indicators for bridges and buildings remain within the ≤ 

5% target, and that the higher road discrepancy (25%) is statistically consistent with climatic and 

traffic variability. Furthermore, the refined cost–benefit breakdown demonstrates that the digital 

monitoring platform achieves net economic efficiency within a five-year horizon, with direct savings 

from reduced repair costs exceeding deployment and maintenance expenses. This quantitative 

evidence enhances the practical relevance of the approach for decision-makers in regional 

infrastructure management. 

The generalizability of the results is limited by regional specificity: all pilot objects are located 

in the Karaganda region with a sharply continental climate and materials according to GOST 

standards. The applicability of the proposed FEM + ML + DSP platform to other climatic conditions, 

seismic zones, and alternative standards (Eurocode, ASTM) has not yet been verified, which requires 

further interregional research. 

Prospects for the development of the research include: 

- integration of climate and transport submodels into road surface calculations; 

- expansion of training samples for machine learning algorithms; 

- development of national regulations for the placement and calibration of sensors, as well as 

automation of data exchange between monitoring objects. 

The proposed measures will improve the accuracy of forecasting and make the life cycle 

management of reinforced concrete facilities more efficient. 
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