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Abstract. The study proposes a refined method for analyzing beams on a two-parameter elastic foundation, overcoming 

the limitations of the classical Winkler model. Unlike the traditional approach, which considers soil deformation only in 

the applied load zone, the proposed methods introduce an additional parameter of bending stiffness, providing a more 

accurate description of beam-foundation interaction. A governing differential equation was derived, and its analytical 

solutions are presented for various boundary conditions and loading types. The numerical analysis results show that the 

distribution of vertical displacement, bending moment, and shear force along the normalized length of the beam is 

symmetric with respect to the midspan. It has been established that the maximum values of vertical displacement and 

bending moment are observed at the midspan: the vertical displacement reaches 0.000999157, while the bending moment 

attains 0.124892. At the same time, the shear force reaches its maximum value near the beam supports, amounting to 

0.49966. The results indicate that the stress-strain state critical points of the beam on an elastic foundation are concentrated 

at the midspan (for displacement and bending moment) and at the supports (for shear force). The analysis demonstrates 

that the maximum shear stresses occur near the fixed end of the beam (x = 0, z = 0), gradually decrease to zero at midspan, 

and reach negative values at the opposite end (x = 1, z = 0). The normal stresses vary linearly along the cross-sectional 
height, from negative in the lower zone (x=1/2, z = −1/2) to positive in the upper zone (x=1/2, z = 1/2), with values close 

to zero near the neutral axis (x=1//2, z = 0). Comparison with the classical Winkler model shows close agreement in 

displacements, bending moments, and shear forces, while the proposed method provides improved accuracy in predicting 

normal and shear stress distributions. 

Keywords: beam, two-parameter elastic foundation, Winkler model, displacement, bending moment, shear force, normal 

stress, shear stress. 

 
1. Introduction 

 

The analysis of the stress-strain state (SSS) of structural elements interacting with elastic 

foundations remains a fundamental and practically significant problem in structural mechanics. 

Beams on elastic foundations are widely used in civil engineering, transportation infrastructure, 

mechanical engineering, and related fields, where the effect of the supporting medium on structural 

performance must be incorporated into design models. Accurate evaluation of internal stresses, 

particularly normal and shear components, is crucial for ensuring strength and serviceability of 

structural elements, thereby improving the reliability of engineered systems. However, classical 

models tend to oversimplify the representation of the elastic foundation, which significantly reduces 

the accuracy and reliability of practical analysis [1].  

The object of this study is a beam resting on a two-parameter elastic foundation and subjected 

to distributed loading, a structural system widely used in civil and transportation infrastructure. This 

issue becomes especially important under distributed loading, typical of real operating conditions, 
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where complex stress distributions may arise in beams with variable stiffness, multilayer 

configurations, or those supported by elastic foundations.  

Classical analytical approaches, such as Winkler’s foundation model, assume a homogeneous 

medium and disregard shear stresses, which limits their applicability for realistic SSS assessment. 

However, distributed loading may generate complex stress distributions, especially in beams with 

variable stiffness, multilayer configurations, or those supported by heterogeneous foundations. 

Contemporary design practice, therefore, requires advanced models that account for both normal and 

shear stresses, interlayer interactions, and variable foundation properties. In this context, many recent 

contributions by different researchers have introduced refined formulations and numerical approaches 

to enhance the accuracy of SSS analysis and extend the applicability of theoretical models to practical 

engineering structures. The use of semi-analytical and numerical analytical methods, including the 

Ritz-Timoshenko approach and the contact layer method, enhances the accuracy of stress analysis 

and allows for adaptation to real engineering conditions [2]. Therefore, the topic of the present study 

is both timely and of considerable practical significance.  

The theoretical background of this problem was established in the classical works of Winkler, 

Inglis, Bolotin, Timoshenko, and Muravskii, where linear models of elastic foundations and 

simplified loading schemes were introduced. Winkler’s classical model, which assumes a linear 

relationship between load and settlement, has been extensively applied in engineering practice; 

however, the foundation is generally considered homogeneous [3], [4]. Fundamental contributions to 

the theory of beams on elastic foundations have addressed distributed loading, stability, and vibration 

problems, while also refining beam models to account for shear deformation. These developments 

significantly expanded the applicability of classical approaches to more realistic engineering 

conditions [5]. 

Subsequent studies by Levontev, Vlasov, and other researchers [6], [7] proposed refined 

approaches that incorporate the variability of the subgrade reaction coefficient along the length of the 

structure, thereby providing a more adequate representation of real foundation behavior. 

The advancement of scientific thought has led to the development of more sophisticated 

models that incorporate variable stiffness characteristics, dissipative properties of the foundation, and 

the effects of non-stationary or moving loads. Among the effective numerical approaches for 

modeling the stress-strain state of beams on elastic foundations with variable parameters is the nodal 

acceleration method [8]. This method combines high computational accuracy with efficiency in 

resource utilization. The current stage of research is characterized by a transition from simplified 

analytical schemes to highly detailed numerical-analytical models, which enable the solution of 

applied problems in transportation and civil infrastructure. 

In engineering practice, composite beams with intermediate hinges are frequently 

encountered, and the compliance of these hinges has a significant effect on the stress-strain state of 

the structure. The problem of accounting for elastic intermediate hinges has long remained 

insufficiently investigated, despite its practical relevance for designing structures under variable 

stiffness and consolidation conditions. An improved mathematical model was proposed in [9], [10] 

based on the introduction of corrective terms into the differential equation of beam bending to account 

for hinge compliance. To describe angular displacements at the interfaces between beam segments, 

the delta-function method and the Heaviside function are employed, which enables the incorporation 

of local effects into the computational model. 

The contact layer method has proven to be an effective tool for accounting for adhesive 

interactions between the layers of multilayer beams. This method is based on representing the contact 

layer as a transversely anisotropic medium composed of short, non-interconnected elastic rods. Such 

a formulation avoids inaccuracies inherent in classical models, such as the occurrence of infinite shear 

stresses at interlayer boundaries. An improved technique, combining the finite element method with 

the contact layer method, extends the scope of application and enables the modeling of layered beams 

in MATLAB, taking into account transverse shear deformations and variable boundary conditions of 

the layers. These methods provide higher modeling accuracy and enables assessment of the influence 

of contact stiffness and shear deformations on the stress-strain state of the structure [11], [12]. 
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In [13], a simplified finite element model was presented for analyzing a beam on a two-

parameter elastic foundation. The model incorporates foundation characteristics (stiffness and shear 

resistance), formulates stiffness and reaction force matrices, and performs numerical calculations 

under various boundary conditions to validate its applicability. The results were compared with those 

of the well-known models by Winkler and Vlasov, confirming the applicability of the proposed 

approach in engineering practice. Contemporary research is focused on developing universal models 

capable of accounting not only for vertical but also for shear stresses, multilayer beam configurations, 

and variable stiffness of intermediate layers. This research direction is particularly relevant for the 

analysis of composite structures, where different materials jointly sustain complex loading 

conditions. Increasing attention has been given to the use of numerical methods, including the finite 

element method, which enables the incorporation of complex geometries, boundary conditions, and 

nonlinear effects such as plasticity, cracking, and creep in materials [14], [15]. Models considering 

geometric and physical nonlinearities are crucial for stress analysis under real operating conditions. 

Advances in finite and boundary element methods, as well as variational approaches, have improved 

the accuracy of modeling structures on deformable foundations. Recent studies emphasize achieving 

both analytical interpretability and computational efficiency, while also ensuring experimental 

verification to enhance practical applicability in engineering [16], [17].  

The relevance of this research arises from the identified research gap associated with the 

limitations of classical models for analyzing structures on elastic foundations. In particular, Winkler’s 

model, which represents the foundation as a system of independent elastic elements, fails to capture 

the actual stress-strain state of the soil. Vlasov’s model, although extending the formulation of the 

problem, also introduces simplifications, notably neglecting lateral interactions that significantly 

affect structural behavior. The absence of a comprehensive model in existing publications justifies 

the need for further research. The identified research gap demonstrates that there is still no 

comprehensive model that adequately captures both normal and shear stresses in beams on elastic 

foundations while maintaining computational efficiency. Therefore, the aim of this study is to develop 

an advanced mathematical model of a two-parameter elastic foundation, which eliminates the 

limitations of existing approaches, provides a more accurate description of the stress-strain state, and 

enhances the reliability of engineering design.  

 
2. Methods 

 

Consider a straight elastic beam of length 𝑙 and thickness һ0 composed of a homogeneous 

isotropic material with elasticity modulus E. The beam is defined in a Cartesian coordinate system as 

(−
𝑙

2
≤ 𝑥1 ≤

𝑙

2
, −

ℎ0

2
≤ 𝑥3 ≤

ℎ0

2
). The foundation is modeled as a 2-parameter elastic medium of finite 

thickness h, with its material characterized by an effective modulus of elasticity Ē (Figure 1) [18]. 

 

 
Figure 1 – Beam on a two-parameter elastic foundation 

 



Technobius, 2025, 5(3), 0088  

 

In the problem of beam-foundation interaction, where the foundation is modeled as a linearly 

deformable elastic half-plane, a key step is the correct formulation of the interface conditions between 

the structural elements. These conditions ensure the continuity of displacements and the consistency 

of the stress state at the beam-foundation interface. The coupling condition can be formulated as 

follows: the deflection of the beam must coincide with the deflection of the elastic foundation surface, 

i.e., 𝑊0(𝑥1) = 𝑊(𝑥1). 

For the modeling of the elastic foundation in stress-strain analysis, the displacement function 

method is employed. Considering the effective modulus of elasticity 𝐸̅ and the shear modulus G of 

the foundation material, the governing equilibrium equation can be expressed as follows: 

 ∇2∇2𝐹 =
𝜕4𝐹

𝜕𝑥1
4 + 2

𝜕4𝐹

𝜕𝑥1
2𝜕𝑥3

2 +
𝜕4𝐹

𝜕𝑥3
4 = 0  (1) 

To solve the biharmonic Eq. (1), the displacement 𝐹(𝑥1, 𝑥3) is defined in the following form 

[19]: 

 𝐹(𝑥1, 𝑥3) = 𝛿(𝑥3) ∙ 𝑊(𝑥1), (2) 

where: 𝛿(𝑥3) is the distribution function, and 𝑊(𝑥1) is the foundation deflection function.  

The governing Eq. (1), taking into account the transition relations 
𝑑2𝑊(𝑥1)

𝑑𝑥1
2 = −𝑘̅2𝑊(𝑥1), 

𝑑4𝑊(𝑥1)

𝑑𝑥1
4 = 𝑘̅𝜔

4 𝑊(𝑥1) and the prescribed form of the displacement Eq. (2), can be written as follows:  

 𝛿𝐼𝑉(𝑧0) − 2 ∙ 𝑘2𝛿″(𝑧0) + 𝑘𝜔
4 𝛿(𝑧0) = 0  (3) 

The general solution of this equation is given by the expression 𝜆2 = 𝑘2(1 ± √1 − 𝛼); 𝑘𝜔
4 =

𝛼 ∙ (𝑘2)2: 

 1. 𝛼 = 1:   𝛿(𝑧0) = (𝐶1 + 𝐶2𝑧0)𝑒−𝑘𝑧0 + (𝐶3 + 𝐶4𝑧0)𝑒𝑘𝑧0   (4) 

 

2. 𝛼 > 1:   𝛿(𝑧0) = [𝐶1 cos(𝛽1𝑧0) + 𝐶2sin (𝛽1𝑧0)]𝑒−𝛼1𝑧0 + [𝐶3 cos(𝛽1𝑧0) + 𝐶4sin (𝛽1𝑧0)]𝑒𝛼1𝑧0(5) 

 

   3. 𝛼 < 1:   𝛿(𝑧0) = 𝐶1𝑒𝑎2𝑧0 + 𝐶2𝑒−𝑎2𝑧0 + 𝐶3𝑒𝛽2𝑧0 + 𝐶4𝑒−𝛽2𝑧0 ,  (6) 

where: 𝛼1 = 𝑘√
𝛼+1

2
;  𝛽1 = 𝑘√

𝛼−1

2
; 𝛼2 = 𝑘√1 − √1 − 𝛼;  𝛽2 = 𝑘√1 + √1 − 𝛼. 

The results obtained from Eq. (4) are discussed in detail in [19]. In the present study, the main 

focus is placed on the analysis of Eq. (5) and the derivation of the corresponding solutions. The 

general solution of Eq. (5) is applied to the problem of a semi-infinite elastic half-plane, which serves 

as the basis for the subsequent analysis (𝑧0 → ∞, 𝛿(𝑧0) = 0): 

 𝛿(𝑧0) = [𝐶1𝑐𝑜𝑠(𝛽1𝑧0) + 𝐶2sin (𝛽1𝑧0)]𝑒−𝛼1𝑧0  (7) 

When applying the displacement method, the unknown constants, parameters, and the 

governing equation included in the fundamental relations are determined as follows. The unknown 

constants: 

𝐶1 =
1

12𝛼𝑝

[2𝜈𝛼1𝛼𝛼0 + (𝛼 − 𝜈)𝛽0] 

𝐶2 = −
1

12𝛽1𝛼𝑝

[(𝛼 + 𝜈)𝛼1 ∙ 𝛽0 − (1 + 𝜈)𝛼𝑘2𝛼0]                                        (8) 

𝐶0 =
1

12

𝐸̅ℎ2

𝐸ℎ0
2 𝛽0;  𝐴0 = −

1

8
+

1

24

𝐸ℎ2

𝐸ℎ0
2 𝛽0; В0 =

1

24
−

1

32

𝐸̅ℎ2

𝐸ℎ0
2 𝛽0 −

1

12

𝐸̅ℎ3

𝐸ℎ0
3 𝛼0  

The parameters of the computational model are defined in terms of Poisson’s ratio ν, the 

stiffness characteristics of the foundation, and the relationships between its geometric dimensions and 

those of the beam. These parameters provide the basis for constructing the model and conducting 

further analytical investigations. 

𝛼0 =
6(1−𝜈)

𝛼𝑘2(1+𝜈)
𝛼𝑝𝑃1; 𝛽0 = 12(1 − 𝜈)𝛼𝑝𝑃0; 

𝑃0 =
1−𝛼𝜈+𝛼1

ℎ0
ℎ

(1−𝛼𝜈)𝑛1𝑘2−2𝛼1𝑚
; 𝑃1 =

2𝑚+𝑛1𝑘2ℎ0
ℎ

(1−𝛼𝜈)𝑛1𝑘2−2𝛼1𝑚
                             (9) 
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𝑛1 = 𝛼2(1 − 𝜈) − 𝛼𝜈(1 + 𝜈) + 2𝜈; 𝑚 = 2𝛼𝛼1(1 + 𝜈) + 𝛼𝑝(1 − 𝜈)
𝐸̅ℎ

𝐸ℎ0
;  

𝛼𝑝 = 𝛼2𝜈 + 2𝛼𝜈 + 𝜈2𝛼 + 𝛼 − 𝜈 

Based on Eqs. (8) and (9), the governing equation is formulated, which defines the stress-

strain state of a beam resting on an elastic foundation: 

 𝛾 ∙
𝑑4𝑊0(𝑥1)

𝑑𝑥1
4 =

𝑞(𝑥1)

𝐸𝐽
;  𝐽 =

ℎ0
3

12
; 𝛾 = 1 − 6(1 − 𝜈)𝛼𝑝 ∙ 𝑃0

𝐸̅ℎ2

𝐸ℎ0
2 −

6(1−𝜈)𝛼𝑝∙𝑃1

𝛼𝑘2(1+𝜈)

𝐸̅ℎ3

𝐸ℎ0
3         (10) 

Taking into account the transition relations, the derived governing Eq. (10) can be reduced to 

the form of the standard beam-on-elastic-foundation equation, which has been widely applied in 

numerous theoretical and applied studies: 
𝑑4𝑊0(𝑥1)

𝑑𝑥1
4 − 2𝑟2 𝑑2𝑊0(𝑥1)

𝑑𝑥1
2 + 𝑆4 ∙ 𝑊0(𝑥1) =

𝑞(𝑥1)

𝐸𝐽
; 2𝑟2 =

−
6(1−𝜈)𝛼𝑝𝑘2∙𝑃0

ℎ2

𝐸̅ℎ2

𝐸ℎ0
2; 𝑆4 = −

6(1−𝜈)𝛼𝑝𝑘2∙𝑃1

(1+𝜈)ℎ4

𝐸̅ℎ3

𝐸ℎ0
3. 

The bending moment M and the shear force Q of the beam are determined through integral 

relations that incorporate the normal and shear stresses along the section height. As a result, 

expressions are obtained that establish the relationship between these internal force factors and the 

deflection function W0, the flexural rigidity EJ, as well as the foundation parameters g1 and g2, which 

are defined by integrals of the functions φ0(z) and ψ0(z) [20]. 

M = h0
2 ∫ σ1

0 ∙ zdz = −EJ ∙ g1 ∙
d2W0(x1)

dx1
2

1

2

−
1

2

  

 𝑄 = ℎ0 ∫ 𝜏13
0 ∙ 𝑑𝑧 = 𝐸𝐽 ∙ g2 ∙

𝑑3𝑊0(𝑥1)

𝑑𝑥1
3

1

2

−
1

2

  (11) 

𝑔1 = 12 ∫ 𝜑0(𝑧) ∙ 𝑧𝑑𝑧,       g2 = 12 ∫ 𝜓0(𝑧)𝑑𝑧
1/2

−1/2

1/2

−1/2
  

The normal and shear stresses in the beam are defined through the internal forces according 

to Eq. (11). These relations establish a link between the stress state of the material and the integral 

parameters characterizing the section behavior, namely the bending moment and the shear force. This 

procedure enables a more detailed analysis of the stress distribution along the section height and 

accounts for the influence of the geometric and mechanical parameters of the beam on its stress-strain 

state [21]. 

𝜎1
0 = ℎ0 ∙ 𝜑0(𝑧)

𝑀

𝐽
  

 𝜏13
0 = −ℎ0

2 ∙ 𝜓0(𝑧)
𝑄

g0𝐽
                                                       (12) 

𝜎3
0 = ℎ0

3 ∙ 𝛿0(𝑧)
𝑞(𝑥1)

𝛾∙𝐽
  

𝜓0(𝑧) = 𝐴0 − 𝐶0𝑧 +
𝑧2

2
 

𝛿0(𝑧) = 𝐵0 − 𝐴0 ⋅ 𝑧 + 𝐶0
𝑧2

2
−

𝑧3

6
,  

where: 𝜓0(𝑧) and 𝛿0(𝑧) are the stress distribution functions. 

The displacement components of the beam are obtained by integrating the expressions 

describing linear and transverse shear deformations [22]. This calculation scheme establishes an 

analytical relationship between the deflection function and the internal deformation parameters, 

thereby enabling a consistent consideration of shear effects in the development of the computational 

model. 

𝑈3
0(𝑥1, 𝑥3) = 𝑊0(𝑥1) 

 𝑈1
0(𝑥1, 𝑥3) = −ℎ0 ∙ 𝜑0(𝑧)

𝑑𝑊0(𝑥1)

𝑑𝑥1
                                               (13) 

𝜑0(𝑧) = −𝐶0 + 𝑧;     𝑧 =
𝑥3

ℎ0
, 

where: 𝜑0(𝑧) is the shear displacement distribution function (𝑈1
0); 𝑊0(𝑥1) is the beam deflection 

function (normal displacement); 𝐶0 is an undetermined constant; z is the dimensionless transverse 

coordinate.  

At the beam ends, one of the following boundary conditions must be satisfied [23]: 
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1) In the case where the beam end is in full contact with the elastic foundation: 

 𝑊∗ =
𝑄∙𝐿3

3Ē𝐽0
;  𝜑∗ =

𝑀∙𝐿

Ē𝐽0
; 𝐽0 =

ℎ3

12
,  (14) 

where: W* and φ* are vertical and angular displacements at the beam end; Q, M are the internal forces 

(shear force and bending moment, respectively) at the corresponding beam ends; L is the length of 

the deformable foundation; Ē𝐽0 is the bending stiffness of the deformable foundation (h is its 

thickness; Ē is the elastic modulus of the foundation material); 

2) In the case where a hinged support is installed at the beam end: 

 𝑊0 = 0;    𝑀 = −𝐸𝐽
𝑑2𝑊0(𝑥1)

𝑑𝑥1
2 = 0  (15) 

3) In the case where the beam end is rigidly clamped: 

 𝑊0 = 0;     𝜃 =
𝑑𝑊0(𝑥1)

𝑑(𝑥1)
= 0  (16) 

where: 𝜃 is the rotation angle. 

4) In the case where the beam end is free (no contact) [23]: 

𝑀 = −𝐸𝐽
𝑑2𝑊0(𝑥1)

𝑑𝑥1
2 = 0; 𝑄 = −𝐸𝐽g0

𝑑3𝑊0(𝑥1)

𝑑𝑥1
3 = 0                                  (17) 

For a beam resting on a two-parameter elastic foundation, the construction of the analytical 

model requires consideration of the following fundamental parameters: 

1) Е, ℎ0 , 𝑙, 𝑞(𝑥1) – modulus of elasticity of the beam material, beam thickness (height), beam 

length, and the magnitude of the uniformly distributed load; 

2) 𝐸̅, 𝜈, ℎ, 𝐿 – modulus of elasticity of the elastic foundation material, Poisson’s ratio, 

thickness, and the extent of the region over which the beam’s influence spreads beyond the contact 

zone. 

To determine the stress-strain state of the beam-foundation interaction, the following sequence 

of computational steps is performed: 

1) The governing Eq. (10) is solved subject to boundary conditions (14)-(17), yielding the 

beam deflection function W0(x1);  

2) Internal forces are computed according to Eq. (11); 

3) Stress components 𝜎1
0, 𝜏13

0 , 𝜎3
0 are determined using Eq. (12). 

 
3. Results and Discussion 

 

Analytical solutions have been derived for various boundary conditions, loading types, and 

for cases involving variations in the geometric and physical-mechanical characteristics of both the 

beam and the foundation. To ensure the reliability of the analysis and enable a meaningful comparison 

of results, numerical simulations were carried out in the Mathcad environment, providing a basis for 

validating the analytical solutions. A beam resting on a two-parameter elastic foundation is 

considered. The applied load is assumed to be a uniformly distributed load of q=1 kN/m. The beam 

length is taken as l=1 m and the height is h0=0.25m. The beam is characterized by an elastic modulus 

of Е=1∙1010Pa. The physical and geometry parameters of the elastic foundations were 𝐸̅ = 1𝑃𝑎, 𝜈 =
0.25 and ℎ = 1𝑚. 

The results of the comparison between the classical and the proposed methods for analyzing 

a beam on an elastic foundation, including deflections, bending moments, and shear forces, are 

presented in Tables 1-3 and Figures 2-4. The analysis demonstrates that the values obtained using the 

proposed method are in good agreement with those derived from the Winkler model.  

 

Table 1 – Vertical displacement values 
Case The length of the beam 

0 0.25 0.5 0.75 1.0 

y 0 0.000711904 0.000999157 0.000711904 0 

Wp 0 0.00071119 0.00099816 0.00071119 0 
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Table 2 – Bending moment values 
Case The length of the beam 

0 0.25 0.5 0.75 1.0 

Mv 0 0.093673 0.124892 0.093673 0 

Mp 0 0.09358 0.12477 0.09358 0 

 

Table 3 – Shear force values 
Case The length of the beam 

0 0.25 0.5 0.75 1.0 

Qv 0.49966 0.24976 0 -0.24976 -0.49966 

Qp 0.49892 0.24946 0 -0.24946 -0.49892 

  

Figure 2 – Vertical displacement of the beam on a two-parameter elastic foundation 

  

Figure 3 – Bending moment of the beam on a two-parameter elastic foundation 
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Figure 4 – Shear force of the beam on a two-parameter elastic foundation 

 

The graphical results (Figures 2-4) for vertical displacement, bending moment, and shear force 

showed close agreement between the present study, the simplified formulation, and Winkler’s 

classical solution. Tables 1, 2, and 3, as well as Figures 2, 3, and 4, present the calculation results for 

different beam lengths. As can be seen from the tables, the values obtained by the Present method 

showed good agreement with those calculated using the Winkler model. Maximum deflection was 

observed at the mid-span, while displacements decreased symmetrically toward the supports, and the 

distributions of bending moments and shear forces corresponded to theoretical expectations. The 

close coincidence of the curves confirmed the validity and reliability of the developed method, while 

the two-parameter model remained consistent with the Winkler approach and simultaneously 

provided broader applicability for more complex loading and heterogeneous foundation conditions.   

Tables 4 and 5 present the values of shear and normal stresses calculated using the proposed 

method 𝜏130, 𝜎10 and the Winkler model 𝜏13𝑣, 𝜎1𝑣 at different points of the beam cross-section. The 

analysis shows that the maximum shear stresses are observed near the fixed end of the beam (x=0, 

z=0), gradually decrease to zero at midspan, and reach negative values at the opposite boundary (x=1, 

z=1). The normal stresses vary linearly along the cross-sectional height: from negative in the lower 

zone (z=−1/2) to positive in the upper zone (z=1/2), while their values are close to zero in the region 

of the neutral axis (z=0). The comparative analysis indicates a high degree of consistency between 

the results of the two methods, as evidenced by the nearly coincident values. Figure 5 shows the 

distribution of shear stresses along the beam cross-sectional height, while Figure 6 illustrates the 

distribution of normal stresses. In both cases, a high degree of agreement is observed between the 

results obtained by the proposed method and those of the classical Winkler model. 

 

Table 4 – Shear stress results 
Case x=0, z=0 x=

1

4
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2
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3

4
, z=0 x=1, z=0 

𝜏130 2.995 -1,498 0 -1,498 -2,995 

𝜏13𝑣  2.998 -1,499 0 -1,499 -2,998 

 

Table 5 – Normal stress results 
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Figure 5 – Distribution of shear stresses 

  

Figure 6 – Normal stress distribution 

 
Table 4 and Figure 5 present the shear stress values at the point z = 0 for varying coordinate x 

across five calculation points. As the results show, the values obtained using the proposed method 

are in good agreement with those calculated based on the Winkler model. Table 5 and Figure 6 

provide the normal stress values at a constant x with varying coordinate z. These results also 

demonstrate consistency with the Winkler model, thereby confirming the validity of the proposed 

method. The comparative analysis demonstrated a high degree of consistency between the calculated 

stresses, confirming the reliability and applicability of the considered methods in engineering 

practice. The obtained findings not only enhanced the understanding of beam behavior on elastic 

foundations but also provided a basis for developing practical recommendations aimed at improving 

the accuracy and reliability of structural design.  
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4. Conclusions 

 

An analytical solution has been developed for the stress analysis of beams resting on a two-

parameter elastic foundation. The proposed mathematical model accounts for both normal and shear 

stresses, as well as the influence of the elastic foundation, enabling calculations for various boundary 

conditions and loading scenarios. The accuracy of the method has been verified through analytical 

examples and numerical simulations, including comparisons of vertical displacements, bending 

moments, and shear forces. Comparative evaluation with the classical Winkler model shows good 

agreement for vertical displacements, bending moments, and shear forces, while the proposed method 

provides improved accuracy in predicting both shear and normal stress distributions. The results 

confirm that the refined approach is reliable, practically applicable, and capable of capturing detailed 

stress-strain behavior that classical models may overlook. Overall, the developed simplified theory 

of a beam on a two-parameter elastic foundation is of significant interest to structural engineers 

involved in foundation design. It not only aligns well with classical Winkler predictions but also 

enhances the precision of stress analysis, providing a robust basis for practical applications and 

serving as a foundation for further research in structural mechanics and geotechnics. 
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