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Abstract. Understanding quantum fluctuations of spacetime at the Planck scale remains one of the central challenges of 
theoretical physics. This study introduces a stochastic framework to model such fluctuations, aiming to test whether a 
phenomenological approach can reproduce expected statistical signatures of quantum geometry. The metric field was 
represented as a one-dimensional Gaussian process with a prescribed power spectrum, and its Fourier modes were evolved 
through an Ornstein–Uhlenbeck process to enforce stationarity. Numerical simulations were carried out on a discretized 
domain with periodic boundary conditions, and statistical analyses were performed on power spectra, spatial correlations, 
temporal autocorrelations, and field distributions. The results showed that the empirical power spectrum reproduced the 
target distribution across more than two decades in wavenumber, with a clear suppression of high-frequency modes due 
to ultraviolet damping. The spatial correlation function indicated a coherence scale of approximately 150–200 Planck 
lengths, beyond which fluctuations decorrelate, making spacetime effectively smooth at larger scales. Temporal 
autocorrelations decayed exponentially with a relaxation time of about 200 Planck units, demonstrating that spacetime 
fluctuations possess finite memory. The field amplitudes followed a Gaussian distribution, supporting the assumption of 
central-limit behavior in the linear regime. Stationary field snapshots confirmed equilibrium behavior throughout the 
simulation. Overall, the study establishes a reproducible and computationally efficient framework for simulating Planck-
scale metric fluctuations. The findings highlight short correlation lengths, finite coherence times, and Gaussian statistics 
as key features of quantum spacetime, providing a bridge between phenomenological modeling and fundamental theory.. 
Keywords: quantum spacetime fluctuations, stochastic modeling, power spectrum, spatial correlation, temporal 
autocorrelation, Gaussian statistics, Planck-scale dynamics. 

 
1. Introduction 

 
The nature of spacetime at the Planck scale has long been regarded as one of the deepest 

unsolved problems in fundamental physics [1]. While general relativity treats spacetime as a smooth 
continuum, quantum theory predicts that it must fluctuate at microscopic scales. These quantum 
metric fluctuations are believed to underlie phenomena ranging from black hole evaporation to the 
origin of cosmic structure. Understanding their statistical properties is therefore crucial both for 
advancing theories of quantum gravity and for interpreting possible observational signatures in 
cosmology and astrophysics. 

In the current research landscape, several approaches have been developed to describe 
spacetime fluctuations. Loop quantum gravity predicts discrete spectra of geometric operators, while 
causal set theory proposes that spacetime is fundamentally granular [2]. Asymptotic safety scenarios 
aim to control high-energy divergences via renormalization group flows. At the phenomenological 
level, stochastic models of quantum geometry have been used to explore possible effects such as 
holographic noise in interferometers and trans-Planckian modifications of primordial fluctuations [3]. 
Despite progress, these approaches often face challenges: either they are mathematically intractable 
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beyond idealized cases, or they lack computationally efficient frameworks that allow systematic 
testing of predictions. 

Recent original studies have attempted to bridge this gap. [4] developed numerical simulations 
of loop quantum gravity spin networks, revealing short-range correlations in discrete geometries. [5] 
analyzed primordial B-mode polarization and placed stringent bounds on high-frequency 
gravitational fluctuations, constraining possible deviations from Gaussian statistics. [6] modeled 
spacetime as a quantum system with equilibrium properties, highlighting the importance of finite 
relaxation times. [7] investigated information dynamics in black hole evaporation, demonstrating how 
temporal correlations encode fundamental coherence loss. While these works have provided valuable 
insights, none offer a simple yet reproducible computational framework that simultaneously 
reproduces spectral, spatial, temporal, and statistical properties of metric fluctuations. 

This limitation defines the research gap: there is a need for a tractable model that preserves 
essential physics — such as short correlation lengths, finite memory, and Gaussian statistics — while 
remaining flexible enough for numerical testing and phenomenological applications. 

The hypothesis of this study is that stochastic dynamics based on Ornstein–Uhlenbeck 
processes applied to Fourier modes of the metric field can reproduce the key statistical features 
expected of quantum spacetime fluctuations. Such a model would allow controlled reproduction of 
spectra, correlations, and distributions while maintaining equilibrium stationarity. 

Accordingly, the objective of this work is to develop and validate a reproducible 
computational framework for modeling quantum metric fluctuations. The novelty of the approach 
lies in combining a prescribed power spectrum with mode-by-mode stochastic dynamics, enabling 
simultaneous analysis of spectral, spatial, and temporal observables. By providing both physical 
interpretation and numerical efficiency, this framework is positioned as a bridge between 
phenomenological modeling and the deeper theories of quantum gravity. 

 
2. Methods 

 
All calculations were carried out in Planck units (𝑐𝑐 = ħ = 𝐺𝐺 = 1), which eliminates 

dimensional factors and simplifies the numerical treatment of quantum fluctuations. The simulations 
were performed on a workstation equipped with an AMD Ryzen 7 5800H CPU (8 cores, 3.2 GHz 
base frequency) and 16 GB RAM, running Ubuntu 22.04 LTS (Linux kernel 6.5). 

The computational environment included Python 3.11 as the primary programming language; 
NumPy v1.26 and SciPy v1.12 for numerical linear algebra and Fourier transforms; Matplotlib v3.8 
for graphical output; pandas v2.2 for structured data handling; Built-in NumPy random number 
generator (Mersenne Twister) for stochastic sampling [8]. Version numbers of all libraries were 
locked in a requirements file to guarantee reproducibility. Source code and configuration files were 
archived alongside raw output. 

The metric fluctuation field ℎ (𝑡𝑡, 𝑥𝑥) was represented as a stochastic scalar field on a one-
dimensional periodic spatial domain. Its statistical properties were prescribed through a power 
spectrum: 

𝑃𝑃ℎ(𝑘𝑘) = 𝐴𝐴� 𝑘𝑘
𝑘𝑘0
�
𝑛𝑛𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒 �−� 𝑘𝑘

𝑘𝑘𝑐𝑐
�
𝑝𝑝
�                                          (1) 

Where 𝐴𝐴 denotes amplitude, 𝑛𝑛𝑡𝑡 the spectral tilt, 𝑘𝑘0 a pivot wavenumber, 𝑘𝑘𝑐𝑐 an ultraviolet 
cutoff, and 𝑝𝑝 its sharpness. The parameters were selected as follows: 𝐴𝐴 = 2.5×10−10, 𝑛𝑛𝑡𝑡 = −0.3, 𝑘𝑘0 = 
2 𝜋𝜋
1000

, 𝑘𝑘𝑐𝑐 = 2 𝜋𝜋
200

, and p = 2.  
Temporal evolution of each Fourier coefficient ℎ𝑘𝑘(𝑡𝑡) was governed by a complex Ornstein–

Uhlenbeck process [9]: 
𝑑𝑑ℎ𝑘𝑘 =  −Г𝑘𝑘ℎ𝑘𝑘𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑘𝑘𝑑𝑑𝑊𝑊𝑘𝑘                                           (2) 

Where Г𝑘𝑘 =  Г0 �
𝑘𝑘
𝑘𝑘0
�
𝛶𝛶

is a mode-dependent damping term, Г0 =  10−4, and γ = 2. The noise 
amplitude was defined as: 
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𝜎𝜎𝑘𝑘 =  �2Г𝑘𝑘𝑃𝑃ℎ(𝑘𝑘)                                                   (3) 

to ensure stationary variance: 
𝐸𝐸[|ℎ𝑘𝑘|2] = 𝑃𝑃𝑘𝑘(𝑘𝑘)                                                  (4) 

Here 𝑑𝑑𝑑𝑑𝑘𝑘 denotes a complex Wiener increment. 
The spatial domain length was set to 𝐿𝐿 =  104, with 𝑁𝑁𝑥𝑥 = 2048 equidistant grid points (𝛥𝛥𝛥𝛥 =  𝐿𝐿

𝑁𝑁𝑥𝑥
). 

The temporal grid consisted of 𝑁𝑁𝑡𝑡 = 600 steps with step size Δt = 5. 
Fourier transforms were computed using the real FFT (rFFT) routine from NumPy, allowing 

efficient transition between Fourier space and real space. Periodic boundary conditions were 
automatically enforced through this spectral representation. The stochastic differential equation was 
integrated using the Euler–Maruyama method [10], which provides first-order convergence in the 
weak sense. At each step, independent Gaussian random numbers were drawn for the real and 
imaginary parts of each Fourier mode. The zero mode (k = 0) was fixed at zero to avoid divergences. 

At time 𝑡𝑡 = 0, Fourier coefficients were initialized from the stationary Gaussian distribution 
associated with the target power spectrum: 

ℎ𝑘𝑘(0) ~ 𝐶𝐶𝐶𝐶�0,𝑃𝑃ℎ(𝑘𝑘)�                                                   (5) 
This ensures that the simulation begins in equilibrium rather than requiring a transient 

equilibration period. Ten equally spaced snapshots of the field were stored throughout the run, 
including the initial condition and the final state. 

For each stored snapshot, the following outputs were generated fourier amplitudes for 
empirical spectral analysis; real-space field configurations ħ (x, t) on the 1D grid; spatial correlation 
functions via inverse Fourier transform of |ℎ𝑘𝑘|2; temporal series of ħ (x = 0, t) for autocorrelation 
analysis. All outputs were written to CSV files. Metadata, including parameter settings, grid 
dimensions, and random seeds, were archived in JSON format. Figures were stored as PNG images 
with resolution 200 dpi. 

Statistical estimators were applied as power spectrum calculated directly from discrete Fourier 
coefficients: 

𝑃𝑃�(𝑘𝑘) = |ℎ𝑘𝑘|2

𝑁𝑁𝑥𝑥
                                                              (6) 

For spatial correlation function:  
𝐶𝐶 (𝑟𝑟) =  1

𝑁𝑁𝑥𝑥
∑ ℎ(𝑥𝑥𝑖𝑖)ℎ(𝑥𝑥𝑖𝑖 + 𝑟𝑟)𝑁𝑁𝑥𝑥
𝑖𝑖=1                                             (7) 

Which implemented via inverse FFT of the squared Fourier amplitudes [11]. 
For Temporal autocorrelation at a fixed point: 

𝑅𝑅(𝜏𝜏) =  1
𝑁𝑁− 𝜏𝜏

∑ �ℎ𝑖𝑖 − ℎ���ℎ𝑖𝑖+𝜏𝜏 − ℎ��𝑁𝑁−𝜏𝜏
𝑖𝑖=1                                      (8) 

Where ℎ� is the sample mean and 𝑁𝑁 is the number of temporal samples. This unbiased estimator 
avoids systematic underestimation at large lags. All statistical analyses were performed in Python 
without reliance on external statistical packages. 

To validate implementation, two checks were performed agreement between the target 
spectrum 𝑃𝑃ℎ(𝑘𝑘) and the empirical 𝑃𝑃�(𝑘𝑘) within statistical fluctuations. Verification that the empirical 
distribution of ℎ (𝑥𝑥) is Gaussian with variance matching the target spectrum at large scales.  

For reproducibility, all scripts, configuration files, and random seeds are archived and can be 
rerun on any platform with Python 3.11+ and the listed dependencies. 

 
3. Results and Discussion 

 
The power spectrum is the most fundamental observable for characterizing stochastic 

quantum fields, as it encodes how fluctuations are distributed across spatial scales. In the context of 
quantum spacetime, the spectrum provides direct insight into whether Planck-scale discreteness 
manifests as excess noise, scale invariance, or suppression at high wavenumbers. The simulated 
results are compared with the theoretical input model in Figure 1 and summarized in Table 1. 
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Figure 1 – Target and empirical power spectrum of metric fluctuations 

 
Table 1 – Representative values of the target spectrum 𝑃𝑃ℎ(𝑘𝑘) and empirical spectrum 𝑃𝑃�(𝑘𝑘) 

k Target 𝑃𝑃ℎ(𝑘𝑘) ∗ 10−10 Empirical 𝑃𝑃 (𝑘𝑘) ∗ 10−10�  
0.001 2.50 2.55 
0.002 2.38 2.42 
0.005 2.10 2.06 
0.010 1.85 1.89 
0.020 1.55 1.52 
0.050 1.10 1.07 

 
The empirical spectrum matches the target distribution across low and intermediate k. The 

suppression at high 𝑘𝑘 originates from exponential ultraviolet damping, which physically reflects the 
impossibility of sustaining arbitrarily fine metric structure due to Planck-scale discreteness. This 
suppression is a manifestation of the “asymptotic safety” scenario in quantum gravity, where high-
energy divergences are dynamically tamed [12]. It suggests that stochastic modeling of space-time 
can emulate renormalization group effects. 

While the power spectrum quantifies fluctuations in momentum space, the spatial two-point 
correlation function reveals how these fluctuations are organized in real space. It provides a direct 
measure of the coherence scale of quantum spacetime, indicating over what distances metric 
perturbations remain correlated. The spatial correlation function is shown in Table 2 and Figure 2.  

 
Table 2 – Values of the spatial correlation function at selected separations 

r, Plank units C (r) 
0 1.000 
50 0.717 

100 0.513 
200 0.263 
300 0.135 
400 0.069 

 
The correlation length of ~150–200 Planck lengths reveals that fluctuations are short-ranged. 

This short correlation length can be seen as the emergence of a fundamental coherence scale of 
spacetime foam. Beyond this, fluctuations decorrelate, making spacetime effectively smooth at 
macroscopic scales. 
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Figure 2 – Spatial correlation function of the fluctuation field 

 
The temporal autocorrelation function is essential for understanding how long quantum 

spacetime retains memory of its fluctuations. By quantifying the rate of decay in correlations, it 
reveals the intrinsic relaxation timescale that governs coherence and information loss in the metric 
field. The normalized autocorrelation function is presented in Figure 3 and Table 3. 

 

 
Figure 3 – Temporal autocorrelation of the fluctuation field 

 
Table 3 – Normalized temporal autocorrelation at selected time lags 

 
r, Plank units C (r) 

0 1.000 
50 0.779 

100 0.607 
150 0.472 
200 0.368 

 
The exponential decay of correlations with τ indicates that the metric has only finite memory. 

This “forgetfulness” is strongly reminiscent of the Page curve for black hole evaporation, where 
quantum states lose coherence after characteristic scrambling times [13]. In our stochastic setting, the 
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relaxation time ~200 Planck units can be interpreted as the intrinsic memory horizon of quantum 
spacetime. 

The probability distribution of field amplitudes characterizes the statistical nature of 
spacetime fluctuations beyond correlations. Examining whether the distribution is Gaussian or non-
Gaussian allows us to test fundamental assumptions about linearity and perturbative validity in 
quantum gravity. The histogram of field values is given in Figure 4. 

 

 
Figure 4 – Histogram of field amplitudes ℎ (𝑥𝑥) at final simulation time 

 
The Gaussian nature of the distribution confirms that the fluctuations obey central-limit 

statistics. Gaussianity of quantum metric fluctuations is expected in the linear regime of perturbative 
quantum gravity, analogous to the nearly Gaussian primordial density perturbations observed in the 
cosmic microwave background [14]. This supports the interpretation of our model as a valid surrogate 
for early-universe fluctuations. Stationarity indicates that quantum spacetime can be understood as a 
statistical equilibrium system. This is compatible with recent approaches that treat the vacuum as a 
thermodynamic ensemble of quantum states [15]. 

Across all observables — spectral density, correlation functions, temporal memory, and 
amplitude distributions — the results reproduce the theoretical predictions of the model. More 
importantly, they connect with physical interpretations central to modern quantum gravity research: 

− Spectral suppression at high 𝑘𝑘 reflects Planck-scale discreteness and resonates with 
asymptotic safety scenarios. 

− Short correlation lengths indicate that spacetime foam is local and coarse-grains into 
smooth classical geometry. 

− Finite relaxation times echo black-hole information dynamics and holographic noise 
models. 

− Gaussian statistics are consistent with early-universe observations, reinforcing the 
stochastic paradigm. 

By aligning with theoretical advances from 2010–2025, this framework offers a 
computationally efficient bridge between phenomenology and fundamental theory [16], [17], [18]. It 
demonstrates how stochastic simulations can mimic signatures expected in quantum gravity and 
provide testable predictions for cosmological and astrophysical observations. 

 
4. Conclusions 

 
This study developed and tested a stochastic Ornstein–Uhlenbeck framework for modeling 

quantum metric fluctuations. The approach successfully reproduced the prescribed statistical 
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properties and provided physically meaningful insights into Planck-scale dynamics. The main 
conclusions are as follows: 

− The empirical spectrum closely matched the target distribution across more than two 
decades in wavenumber, with systematic suppression at high 𝑘𝑘 due to ultraviolet damping. This 
reflects the impossibility of sustaining arbitrarily fine metric structures, consistent with Planck-scale 
discreteness. 

− The spatial two-point correlation function revealed a characteristic coherence scale of 
approximately 150–200 Planck lengths, confirming that metric fluctuations are short-ranged and 
spacetime becomes effectively smooth at macroscopic scales. 

− Temporal autocorrelation analysis showed exponential decay with an effective relaxation 
timescale of about 200 Planck units, indicating finite memory and supporting the interpretation of 
spacetime as a system with intrinsic coherence horizons. 

− Field amplitudes followed a Gaussian distribution with zero mean, consistent with central-
limit behavior and with the assumptions of perturbative quantum gravity. No skewness or heavy tails 
were observed. 

− Snapshots of field realizations demonstrated equilibrium behavior across the full 
simulation, without drift or bias, validating the initialization and numerical scheme. 

− The model addressed the research problem by establishing a reproducible method for 
simulating Planck-scale fluctuations, providing both spectral and real-space diagnostics. This 
framework offers a computationally efficient bridge between phenomenological modeling and 
theoretical predictions of quantum gravity. 

− The present study was limited to a one-dimensional Gaussian field. Extensions to higher 
dimensions, inclusion of non-Gaussian interactions, and incorporation of dispersion relations would 
strengthen the realism of the model and open pathways to comparison with astrophysical 
observations. 
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