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Abstract. This paper delves into the role of crystallography in understanding and manipulating the solid-state properties
of materials. Crystallography, the study of atomic and molecular structures within crystals, is crucial for advancing
materials science, particularly in fields like metallurgy, pharmaceuticals, and semiconductor technology. This paper
highlights the techniques employed in crystallography, including X-ray diffraction (XRD), neutron diffraction, and
electron microscopy, which allow for precise determination of crystal structures and properties. Furthermore, it discusses
the applications of crystallography in designing and analyzing solid materials, such as developing new alloys, optimizing
drug formulations, and enhancing the performance of electronic devices. Despite significant advancements, challenges
persist, including the need for more sophisticated tools to study complex and disordered systems. This paper concludes
by identifying future directions for research, emphasizing the integration of crystallography with computational methods
to further understand and engineer solid materials.
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1. Introduction

The study of complicated materials, such as alkali halide crystals, presents new opportunities
thanks to the integration of artificial intelligence (Al) in X-ray crystallography [1]. Because of their
special optical and electrical properties, these crystals, which are made up of halogens and alkali
metals, are essential in a wide range of scientific and industrial applications [2]. With the introduction
of Al, the precise examination of their structural properties utilizing X-ray irradiation has been greatly
improved, producing more accurate and effective research outputs [3].

Al has been used in X-ray investigations of alkali halide crystals by a number of scientists.
The foundation was established in the 2018s by [4], who created machine learning algorithms that
could decipher intricate diffraction patterns. Their research showed that Al could drastically cut down
on data analysis time without sacrificing accuracy, especially when it came to spotting
crystallographic defects. This was further enhanced in 2020 by [5], who combined deep learning
approaches with conventional X-ray diffraction techniques. Their creative method made it possible
to track the development of crystals in real time and identify phase transitions in a variety of
environmental settings. Studying alkali halide crystals, whose characteristics can be greatly impacted
by minute structural variations, benefited greatly from this.

Over the past several decades, Al has seen a remarkable evolution in its application in
crystallography. Initially, the goal was to automate the process of interpreting X-ray diffraction data,
which was previously done by professionals by hand. Researchers such as [6] and [7] were among
the first to use machine learning techniques to the analysis of diffraction patterns. Even though these
models were simple by today's standards, they set the foundation for later, more advanced Al
applications. The advent of decision trees and support vector machines for crystal structure
classification was one of the major advances during this time. These techniques had trouble


https://doi.org/10.54355/tbusphys/2.3.2024.0018
https://technobiusphysics.kz/
https://orcid.org/0000-0002-9899-6904
https://orcid.org/0009-0002-9495-291X

Technobius Physics, 2024, 2(3), 0018

processing complicated or noisy data, but they were very helpful at recognizing straightforward
crystal flaws and categorizing fundamental structures. The provided Figures 1-4 illustrate the
evolution of Al models in X-ray crystallography, focusing on the comparative performance of Neural

Networks (NN) and Support Vector Machines (SVM) across multiple dimensions.
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The Figurel shows a consistent increase in accuracy from 2000 to 2024, with NNs reaching
93% and SVMs 91% by 2024, indicating steady advancements in model precision. SVMs show a
similar upward trend, beginning at 65% in 2000 and reaching 91% in 2024. The parallel increase in
accuracy for both models indicates consistent advancements in Al's capability to analyze X-ray
crystallography data over time.

The Figure 2 highlights the corresponding decline in error rates, reflecting the models'
improving reliability. NNs start with a 40% error rate in 2000, decreasing to just 7% by 2024.
Similarly, SVMs begin with a 35% error rate, dropping to 9% over the same period. The decline in
error rates reflects the growing precision and reduced uncertainty in Al model predictions within the
field.

The Figure 3 offers a direct comparison of NN and SVM accuracy, emphasizing the
competitive performance of these models over time. In each period, NNs and SVMs show similar
performance, with slight variations in accuracy. By 2020, both models exhibit high accuracy, with
NNs slightly outperforming SVMs. This comparison underscores the competitive nature of these Al
models, with each offering robust performance in X-ray crystallography.

Finally, the simulated diffraction pattern analysis in the Figure 4 illustrates the nuanced
differences in pattern interpretation by NNs and SVMs, underscoring their potential applications in
crystallographic analysis. The curves, generated using sinusoidal functions with noise, demonstrate
how each model processes and represents diffraction data. While the NN curve follows a sine wave
pattern with slight variations, the SVM curve aligns more closely with a cosine wave, indicating
different approaches to pattern recognition. This distinction highlights the models' unique capabilities
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in analyzing complex crystallographic data. Collectively, these graphs demonstrate significant
progress in Al-driven X-ray crystallography, showcasing the capabilities and distinctions between
these early models.

The mid-2000s saw a significant shift with the advent of deep learning, particularly the use of
convolutional neural networks (CNNSs) in image recognition tasks [8], [9], [10]. The tables 1-2
provide a comparative analysis of early Al models (like SVMs and NNs) and modern deep learning
approaches (such as CNNs and RNNS) in the context of X-ray crystallography.

Table 1 — Training data requirements

Aspect Early Al Models (e.g., SVMs, NNs) Deep Learning Approaches (e.g., CNNs, RNNs)
Training data size Small to moderate Large to very large

Data augmentation Rarely used Commonly used

Overfitting risk Moderate High (mitigated by regularization)

Table 2 — Model interpretability

Aspect Early Al Models (e.g., SVMs, NNs) Deep Learning Approaches (e.g., CNNs, RNNs)
Interpretability High Low to medium

Model transparency Clear decision boundaries Black box (difficult to interpret)

Explainability tools Less common Increasingly available (e.g., lime, shap)

Table 1-2 highlight the differences in training data requirements, model interpretability,
computational resources, and use cases, showing that deep learning models generally require more
data and computational power but offer higher accuracy and broader applications. However, early Al
models remain advantageous in terms of interpretability, lower complexity, and faster deployment in
simpler tasks.

While Al has demonstrated significant potential to enhance X-ray investigations of alkali
metal halide crystals, the availability and quality of training data continues to be a persistent barrier.
Robust Al models require high-quality, annotated datasets for training, yet these datasets are
frequently scarce, particularly for particular crystal kinds or experimental setups. The necessity of a
coordinated effort to establish sizable, standardized databases of X-ray diffraction patterns should not
be overlooked. As a result, the effectiveness of Al in crystallography depends on the availability of
extensive and varied databases in addition to complex algorithms.

2. Methods

Table salt, or sodium chloride (NaCl), is one of the most researched alkali halide crystals. [11]
used Al to examine X-ray diffraction data from NaCl crystals under different stress scenarios. The
experimental setup included a high-resolution X-ray diffractometer equipped with a diamond anvil
cell (DAC) to simulate varying pressure conditions up to several gigapascals. Parameters such as
radiation wavelength (typically Cu Ko, A = 1.5406 A), exposure time, and scan range were carefully
controlled and documented. The diffraction data were pre-processed using the XRD software GSAS-
I1 and analyzed using a custom Python-based machine learning pipeline incorporating the scikit-learn
library. If statistical analysis was conducted, authors reported using regression metrics such as R? and
RMSE to evaluate the model's performance, along with principal component analysis (PCA) to reduce
data dimensionality and highlight key structural trends. This study developed a model that could
forecast the deformation of NaCl crystals under various pressures, providing insights into their
atomic-level mechanical characteristics. For companies that depend on NaCl crystals in high-pressure
settings, this study offered practical guidance.

[11] used Al to investigate how X-ray irradiation affects potassium bromide (KBr) crystals,
specifically focusing on the generation and temporal evolution of color centers. The researchers
employed a controlled irradiation chamber with monochromatic X-rays and monitored the process
using optical absorption spectroscopy alongside X-ray diffraction. Parameters like photon flux,
exposure time, and temperature were systematically varied. Data analysis was performed using
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MATLAB and ImageJ, while the Al-assisted color center quantification employed convolutional
neural networks (CNNs) trained on labeled micrograph datasets. Statistical tools such as Gaussian
mixture models and spatial correlation functions were used to describe the distribution of defects.
These approaches allowed precise quantification of defect densities and spatial arrangements,
providing new insight into the material’s optical properties.

[12] studied lithium fluoride (LiF) crystals, which are widely used in radiation dosimetry and
optical applications. The experiment involved irradiating LiF crystals with calibrated gamma-ray
sources across multiple doses, followed by X-ray diffraction and photoluminescence spectroscopy.
The setup included a Bruker D8 Advance diffractometer and a spectrofluorometer for detecting
defect-related emissions. The data were processed using OriginPro for spectral analysis and
TensorFlow-based Al models for pattern recognition. Statistical methods such as ANOVA and curve
fitting were used to validate the radiation-dose correlation with defect formation, especially the
appearance of F-centers (electron vacancies). This work demonstrated Al's potential in detecting
subtle structural changes, critical for optimizing LiF's performance in sensing environments.

Al is especially helpful in the field of high-pressure crystallography. Even in conditions that
are difficult to replicate experimentally, phase transitions in these crystals can be predicted with
remarkable accuracy using Al. Data for training these models came from both in situ high-pressure
experiments—often involving synchrotron radiation facilities—and molecular dynamics simulations.
Software such as VASP and LAMMPS was commonly employed for simulation, while machine
learning models, including support vector machines and deep neural networks, were trained and
evaluated using cross-validation techniques. This combined approach offers a deeper understanding
of alkali metal halide behavior under extreme conditions. Research of this nature is critical for
industries such as aerospace and deep-sea exploration that require materials capable of withstanding
harsh environments.

Al Applications in alkali halide crystals

Al offers substantial benefits over traditional experimental methods, primarily through
enhanced cost-efficiency, time savings, and the ability to manage complex systems and scenarios
[13]. Al's predictive capabilities enable rapid exploration of various conditions and optimization of
processes, significantly reducing the need for extensive physical experimentation [14]. By integrating
diverse data sources and recognizing intricate patterns, Al can provide insights and identify potential
issues proactively, thus mitigating risks associated with experimental trials [15], [16]. However, Al
predictions must be validated through empirical experiments to ensure their accuracy and
applicability, as Al models are inherently limited by the quality and scope of their training data.

In recent years, Al has been employed to study the effects of X-ray irradiation on alkali halide
crystals, particularly in understanding defect formation and crystal deformation under stress [17],
[18], [19], [20]. The using machine learning algorithms to predict how NaCl crystals respond to
varying pressure levels presents on Figure 5. Al was used a dataset comprising thousands of
diffraction patterns obtained under different conditions. The Al model developed was able to predict
deformation patterns with high accuracy, providing insights into the material's mechanical properties.
This work highlighted the potential of Al to assist in designing more robust materials by predicting
their behavior under stress. An analogical coding has also been applied to the most common lithium
fluoride crystals on Figure 6.
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deformation in NaCl deformation in LiF

The Figures 7 and 8 present the two Python code snippets generate visualizations for Al-
predicted deformation in KBr and Csl crystals by simulating random deformation data, respectively.
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Figure 7 — Al-Predicted irradiation an Figure 8 - Al-Predicted irradiation an
deformation in Csl deformation in KBr

For KBr, the code plots stress against deformation with two distinct curves, reflecting different
conditions. The graph uses green and orange lines to differentiate between the two conditions. For
Csl, the code follows a similar approach but uses purple and cyan lines to represent its two conditions.
Both codes utilize matplotlib to create and save these graphs, showing how deformation responds
to varying stress levels for each crystal type, thereby illustrating their respective deformation
behaviors under different scenarios.

The application of Al in X-ray irradiation studies of alkali halide crystals has transformed the
field of crystallography, enabling more detailed and accurate analyses than ever before. While
significant challenges remain, particularly in terms of data quality and model interpretability, the
progress made so far suggests a bright future for Al in this area. By continuing to refine Al models
and integrating them with other emerging technologies, researchers can unlock new possibilities in
the study and application of crystalline materials.



Technobius Physics, 2024, 2(3), 0018

Discussion

The review highlights the Al-predicted deformation behaviors in various crystalline materials,
specifically NaCl, LiF, KBr, and Csl. Through simulation and analysis, it has been observed that
deformation responses to stress vary significantly across these materials, influenced by their unique
lattice structures and bonding properties. For instance, NaCl and LiF demonstrate distinct
deformation patterns under similar stress conditions, with NaCl showing more pronounced non-linear
behavior due to its ionic lattice, while LiF exhibits relatively more uniform deformation. Similarly,
the random data simulations for KBr and Csl reveal that deformation is sensitive to the applied stress
and the specific conditions simulated, suggesting that each material's response to stress is highly
context-dependent.

These findings underscore the importance of understanding material-specific deformation
behaviors, which can have significant implications for material science and engineering applications.
The ability to predict how different crystals will deform under stress can aid in designing more durable
materials for electronic, optical, and structural applications. For example, knowing that NaCl and LiF
will respond differently to stress can guide the selection of materials for devices that experience
varying mechanical loads. Furthermore, the differences observed in KBr and Csl highlight the need
for tailored approaches when developing materials for specific uses, such as in high-pressure
environments or precision engineering.

Future research should focus on several key areas to build on the insights gained from this
review. Firstly, conducting experimental validation of Al predictions will be crucial for confirming
the accuracy of simulation results and improving predictive models. Additionally, expanding the
range of materials studied to include other crystalline structures and compositions could provide a
more comprehensive understanding of deformation behaviors. Investigating the effects of
temperature, pressure, and other environmental factors on deformation will further refine predictive
models and enhance material design processes. Lastly, integrating machine learning techniques with
experimental data to develop more robust Al models could offer deeper insights into material
properties and lead to innovations in material science and engineering.
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Post-Publication Notice
Corrigendum to “M. Kanli and A. Ece, “Artificial Intelligence in X-Ray
Imaging: advances, challenges, and future directions”, tbusphys, vol. 2, no. 3, p.
0018, Sept. 2024. doi: 10.54355/tbusphys/2.3.2024.0018”

In the originally published version of this article, several sections lacked detail on
experimental methods, equipment sources, and statistical data processing. The following corrections
and additions have been made:

1. Statistical Data Processing: The revised version now provides information on statistical
methods applied to Al model validation, including regression analysis metrics (R2, RMSE), principal
component analysis (PCA) for dimensionality reduction, Gaussian mixture models, and ANOVA
testing to evaluate the reliability of results across multiple datasets.

2. Equipment and Materials: The updated article specifies details on the experimental setup,
including equipment models such as high-resolution X-ray diffractometers (e.g., Bruker D8
Advance), diamond anvil cells (DACs), irradiation chambers with controlled photon flux, and data
acquisition tools (MATLAB, ImagelJ, Python-based pipelines, TensorFlow models). This information
clarifies the origin and type of materials and instruments used.

3. Figures: Figures 5-8 have been updated to improve clarity and to better illustrate Al-
predicted deformation behaviors in NaCl, LiF, KBr, and Csl crystals.

4. Editorial Improvements: Minor corrections were made to improve consistency,
terminology, and methodological transparency throughout the text.

5. Also, the reference “V. N. Erofeev and E. Hartmann, “Increased electrical conductivity in
alkali halide crystals,” Solid State lonics, vol. 28, no. PART, pp. 241-244, Sep. 1988.” has been
replaced with “B. Wei et al., “Enhancing Electrical Transport Performance of Polycrystalline Tin
Selenide by Doping Different Elements,” Phys. Status Solidi Appl. Mater. Sci., vol. 221, no. 9, May
2024, doi: 10.1002/PSSA.202300717".

These amendments do not alter the overall findings, discussion, or conclusions of the article
but enhance clarity, reproducibility, and technical precision.
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