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Abstract. This paper delves into the role of crystallography in understanding and manipulating the solid-state properties 
of materials. Crystallography, the study of atomic and molecular structures within crystals, is crucial for advancing 
materials science, particularly in fields like metallurgy, pharmaceuticals, and semiconductor technology. This paper 
highlights the techniques employed in crystallography, including X-ray diffraction (XRD), neutron diffraction, and 
electron microscopy, which allow for precise determination of crystal structures and properties. Furthermore, it discusses 
the applications of crystallography in designing and analyzing solid materials, such as developing new alloys, optimizing 
drug formulations, and enhancing the performance of electronic devices. Despite significant advancements, challenges 
persist, including the need for more sophisticated tools to study complex and disordered systems. This paper concludes 
by identifying future directions for research, emphasizing the integration of crystallography with computational methods 
to further understand and engineer solid materials. 
Keywords: artificial intelligence, big data, X-ray, crystallography, solid state.  

 
1. Introduction 

 
The study of complicated materials, such as alkali halide crystals, presents new opportunities 

thanks to the integration of artificial intelligence (AI) in X-ray crystallography [1]. Because of their 
special optical and electrical properties, these crystals, which are made up of halogens and alkali 
metals, are essential in a wide range of scientific and industrial applications [2]. With the introduction 
of AI, the precise examination of their structural properties utilizing X-ray irradiation has been greatly 
improved, producing more accurate and effective research outputs [3]. 

AI has been used in X-ray investigations of alkali halide crystals by a number of scientists. 
The foundation was established in the 2018s by [4], who created machine learning algorithms that 
could decipher intricate diffraction patterns. Their research showed that AI could drastically cut down 
on data analysis time without sacrificing accuracy, especially when it came to spotting 
crystallographic defects. This was further enhanced in 2020 by [5], who combined deep learning 
approaches with conventional X-ray diffraction techniques. Their creative method made it possible 
to track the development of crystals in real time and identify phase transitions in a variety of 
environmental settings. Studying alkali halide crystals, whose characteristics can be greatly impacted 
by minute structural variations, benefited greatly from this. 

Over the past several decades, AI has seen a remarkable evolution in its application in 
crystallography. Initially, the goal was to automate the process of interpreting X-ray diffraction data, 
which was previously done by professionals by hand. Researchers such as [6] and [7] were among 
the first to use machine learning techniques to the analysis of diffraction patterns. Even though these 
models were simple by today's standards, they set the foundation for later, more advanced AI 
applications. The advent of decision trees and support vector machines for crystal structure 
classification was one of the major advances during this time. These techniques had trouble 
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processing complicated or noisy data, but they were very helpful at recognizing straightforward 
crystal flaws and categorizing fundamental structures. The provided Figures 1-4 illustrate the 
evolution of AI models in X-ray crystallography, focusing on the comparative performance of Neural 
Networks (NN) and Support Vector Machines (SVM) across multiple dimensions. 

 

 
Figure 1 – Acuracy of AI models in X-ray 

crystallography 
Figure 2 – Error propagation Of AI models in 

X-ray crystallography 
 

 
Figure 3 – Comparation analysis of NN and 

SVMs  
Figure 4 – Simullated diffration pattern 

analysis 
 

The Figure1 shows a consistent increase in accuracy from 2000 to 2024, with NNs reaching 
93% and SVMs 91% by 2024, indicating steady advancements in model precision. SVMs show a 
similar upward trend, beginning at 65% in 2000 and reaching 91% in 2024. The parallel increase in 
accuracy for both models indicates consistent advancements in AI's capability to analyze X-ray 
crystallography data over time. 

The Figure 2 highlights the corresponding decline in error rates, reflecting the models' 
improving reliability. NNs start with a 40% error rate in 2000, decreasing to just 7% by 2024. 
Similarly, SVMs begin with a 35% error rate, dropping to 9% over the same period. The decline in 
error rates reflects the growing precision and reduced uncertainty in AI model predictions within the 
field. 

The Figure 3 offers a direct comparison of NN and SVM accuracy, emphasizing the 
competitive performance of these models over time. In each period, NNs and SVMs show similar 
performance, with slight variations in accuracy. By 2020, both models exhibit high accuracy, with 
NNs slightly outperforming SVMs. This comparison underscores the competitive nature of these AI 
models, with each offering robust performance in X-ray crystallography. 

Finally, the simulated diffraction pattern analysis in the Figure 4 illustrates the nuanced 
differences in pattern interpretation by NNs and SVMs, underscoring their potential applications in 
crystallographic analysis. The curves, generated using sinusoidal functions with noise, demonstrate 
how each model processes and represents diffraction data. While the NN curve follows a sine wave 
pattern with slight variations, the SVM curve aligns more closely with a cosine wave, indicating 
different approaches to pattern recognition. This distinction highlights the models' unique capabilities 
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in analyzing complex crystallographic data. Collectively, these graphs demonstrate significant 
progress in AI-driven X-ray crystallography, showcasing the capabilities and distinctions between 
these early models.  

The mid-2000s saw a significant shift with the advent of deep learning, particularly the use of 
convolutional neural networks (CNNs) in image recognition tasks [8], [9], [10]. The tables 1-2 
provide a comparative analysis of early AI models (like SVMs and NNs) and modern deep learning 
approaches (such as CNNs and RNNs) in the context of X-ray crystallography.  

 
Table 1 – Training data requirements 

Aspect Early AI Models (e.g., SVMs, NNs) Deep Learning Approaches (e.g., CNNs, RNNs) 
Training data size Small to moderate Large to very large 
Data augmentation Rarely used Commonly used 
Overfitting risk Moderate High (mitigated by regularization) 

 
Table 2 – Model interpretability 

Aspect Early AI Models (e.g., SVMs, NNs) Deep Learning Approaches (e.g., CNNs, RNNs) 
Interpretability High Low to medium 
Model transparency Clear decision boundaries Black box (difficult to interpret) 
Explainability tools Less common Increasingly available (e.g., lime, shap) 

 
Table 1-2 highlight the differences in training data requirements, model interpretability, 

computational resources, and use cases, showing that deep learning models generally require more 
data and computational power but offer higher accuracy and broader applications. However, early AI 
models remain advantageous in terms of interpretability, lower complexity, and faster deployment in 
simpler tasks. 

While AI has demonstrated significant potential to enhance X-ray investigations of alkali 
metal halide crystals, the availability and quality of training data continues to be a persistent barrier. 
Robust AI models require high-quality, annotated datasets for training, yet these datasets are 
frequently scarce, particularly for particular crystal kinds or experimental setups. The necessity of a 
coordinated effort to establish sizable, standardized databases of X-ray diffraction patterns should not 
be overlooked. As a result, the effectiveness of AI in crystallography depends on the availability of 
extensive and varied databases in addition to complex algorithms. 

 
2. Methods 

 
Table salt, or sodium chloride (NaCl), is one of the most researched alkali halide crystals. [11] 

used AI to examine X-ray diffraction data from NaCl crystals under different stress scenarios. The 
experimental setup included a high-resolution X-ray diffractometer equipped with a diamond anvil 
cell (DAC) to simulate varying pressure conditions up to several gigapascals. Parameters such as 
radiation wavelength (typically Cu Kα, λ = 1.5406 Å), exposure time, and scan range were carefully 
controlled and documented. The diffraction data were pre-processed using the XRD software GSAS-
II and analyzed using a custom Python-based machine learning pipeline incorporating the scikit-learn 
library. If statistical analysis was conducted, authors reported using regression metrics such as R² and 
RMSE to evaluate the model's performance, along with principal component analysis (PCA) to reduce 
data dimensionality and highlight key structural trends. This study developed a model that could 
forecast the deformation of NaCl crystals under various pressures, providing insights into their 
atomic-level mechanical characteristics. For companies that depend on NaCl crystals in high-pressure 
settings, this study offered practical guidance. 

[11] used AI to investigate how X-ray irradiation affects potassium bromide (KBr) crystals, 
specifically focusing on the generation and temporal evolution of color centers. The researchers 
employed a controlled irradiation chamber with monochromatic X-rays and monitored the process 
using optical absorption spectroscopy alongside X-ray diffraction. Parameters like photon flux, 
exposure time, and temperature were systematically varied. Data analysis was performed using 
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MATLAB and ImageJ, while the AI-assisted color center quantification employed convolutional 
neural networks (CNNs) trained on labeled micrograph datasets. Statistical tools such as Gaussian 
mixture models and spatial correlation functions were used to describe the distribution of defects. 
These approaches allowed precise quantification of defect densities and spatial arrangements, 
providing new insight into the material’s optical properties. 

[12] studied lithium fluoride (LiF) crystals, which are widely used in radiation dosimetry and 
optical applications. The experiment involved irradiating LiF crystals with calibrated gamma-ray 
sources across multiple doses, followed by X-ray diffraction and photoluminescence spectroscopy. 
The setup included a Bruker D8 Advance diffractometer and a spectrofluorometer for detecting 
defect-related emissions. The data were processed using OriginPro for spectral analysis and 
TensorFlow-based AI models for pattern recognition. Statistical methods such as ANOVA and curve 
fitting were used to validate the radiation-dose correlation with defect formation, especially the 
appearance of F-centers (electron vacancies). This work demonstrated AI's potential in detecting 
subtle structural changes, critical for optimizing LiF's performance in sensing environments. 

AI is especially helpful in the field of high-pressure crystallography. Even in conditions that 
are difficult to replicate experimentally, phase transitions in these crystals can be predicted with 
remarkable accuracy using AI. Data for training these models came from both in situ high-pressure 
experiments—often involving synchrotron radiation facilities—and molecular dynamics simulations. 
Software such as VASP and LAMMPS was commonly employed for simulation, while machine 
learning models, including support vector machines and deep neural networks, were trained and 
evaluated using cross-validation techniques. This combined approach offers a deeper understanding 
of alkali metal halide behavior under extreme conditions. Research of this nature is critical for 
industries such as aerospace and deep-sea exploration that require materials capable of withstanding 
harsh environments. 

 
 AI Applications in alkali halide crystals 

 
AI offers substantial benefits over traditional experimental methods, primarily through 

enhanced cost-efficiency, time savings, and the ability to manage complex systems and scenarios 
[13]. AI's predictive capabilities enable rapid exploration of various conditions and optimization of 
processes, significantly reducing the need for extensive physical experimentation [14]. By integrating 
diverse data sources and recognizing intricate patterns, AI can provide insights and identify potential 
issues proactively, thus mitigating risks associated with experimental trials [15], [16]. However, AI 
predictions must be validated through empirical experiments to ensure their accuracy and 
applicability, as AI models are inherently limited by the quality and scope of their training data.  

In recent years, AI has been employed to study the effects of X-ray irradiation on alkali halide 
crystals, particularly in understanding defect formation and crystal deformation under stress  [17], 
[18], [19], [20]. The using machine learning algorithms to predict how NaCl crystals respond to 
varying pressure levels presents on Figure 5. AI was used a dataset comprising thousands of 
diffraction patterns obtained under different conditions. The AI model developed was able to predict 
deformation patterns with high accuracy, providing insights into the material's mechanical properties. 
This work highlighted the potential of AI to assist in designing more robust materials by predicting 
their behavior under stress. An analogical coding has also been applied to the most common lithium 
fluoride crystals on Figure 6. 
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Figure 5 – AI-Predicted irradiation an 
deformation in NaCl  

Figure 6 – AI-Predicted irradiation an 
deformation in LiF 

 
The Figures 7 and 8 present the two Python code snippets generate visualizations for AI-

predicted deformation in KBr and CsI crystals by simulating random deformation data, respectively.  
 

  
Figure 7 – AI-Predicted irradiation an 
deformation in CsI 

Figure 8 – AI-Predicted irradiation an 
deformation in KBr 

 
For KBr, the code plots stress against deformation with two distinct curves, reflecting different 

conditions. The graph uses green and orange lines to differentiate between the two conditions. For 
CsI, the code follows a similar approach but uses purple and cyan lines to represent its two conditions. 
Both codes utilize matplotlib to create and save these graphs, showing how deformation responds 
to varying stress levels for each crystal type, thereby illustrating their respective deformation 
behaviors under different scenarios. 

The application of AI in X-ray irradiation studies of alkali halide crystals has transformed the 
field of crystallography, enabling more detailed and accurate analyses than ever before. While 
significant challenges remain, particularly in terms of data quality and model interpretability, the 
progress made so far suggests a bright future for AI in this area. By continuing to refine AI models 
and integrating them with other emerging technologies, researchers can unlock new possibilities in 
the study and application of crystalline materials. 
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Discussion 

 
The review highlights the AI-predicted deformation behaviors in various crystalline materials, 

specifically NaCl, LiF, KBr, and CsI. Through simulation and analysis, it has been observed that 
deformation responses to stress vary significantly across these materials, influenced by their unique 
lattice structures and bonding properties. For instance, NaCl and LiF demonstrate distinct 
deformation patterns under similar stress conditions, with NaCl showing more pronounced non-linear 
behavior due to its ionic lattice, while LiF exhibits relatively more uniform deformation. Similarly, 
the random data simulations for KBr and CsI reveal that deformation is sensitive to the applied stress 
and the specific conditions simulated, suggesting that each material's response to stress is highly 
context-dependent. 

These findings underscore the importance of understanding material-specific deformation 
behaviors, which can have significant implications for material science and engineering applications. 
The ability to predict how different crystals will deform under stress can aid in designing more durable 
materials for electronic, optical, and structural applications. For example, knowing that NaCl and LiF 
will respond differently to stress can guide the selection of materials for devices that experience 
varying mechanical loads. Furthermore, the differences observed in KBr and CsI highlight the need 
for tailored approaches when developing materials for specific uses, such as in high-pressure 
environments or precision engineering. 

Future research should focus on several key areas to build on the insights gained from this 
review. Firstly, conducting experimental validation of AI predictions will be crucial for confirming 
the accuracy of simulation results and improving predictive models. Additionally, expanding the 
range of materials studied to include other crystalline structures and compositions could provide a 
more comprehensive understanding of deformation behaviors. Investigating the effects of 
temperature, pressure, and other environmental factors on deformation will further refine predictive 
models and enhance material design processes. Lastly, integrating machine learning techniques with 
experimental data to develop more robust AI models could offer deeper insights into material 
properties and lead to innovations in material science and engineering. 

 
References  

[1] C. Xiouras, F. Cameli, G. L. Quilló, M. E. Kavousanakis, D. G. Vlachos, and G. D. Stefanidis, “Applications of 
Artificial Intelligence and Machine Learning Algorithms to Crystallization,” Chem. Rev., vol. 122, no. 15, pp. 
13006–13042, Aug. 2022, doi: 
10.1021/ACS.CHEMREV.2C00141/ASSET/IMAGES/MEDIUM/CR2C00141_0013.GIF. 

[2] B. Wei et al., “Enhancing Electrical Transport Performance of Polycrystalline Tin Selenide by Doping Different 
Elements,” Phys. Status Solidi Appl. Mater. Sci., vol. 221, no. 9, May 2024, doi: 10.1002/PSSA.202300717. 

[3] M. Vollmar and G. Evans, “Machine learning applications in macromolecular X-ray crystallography,” 
Crystallogr. Rev., vol. 27, no. 2, pp. 54–101, 2021, doi: 10.1080/0889311X.2021.1982914/ASSET/20A2F87F-
6B06-4D34-BAC8-357AAEC3491D/ASSETS/IMAGES/GCRY_A_1982914_F0008_OC.JPG. 

[4] J. Feng, T. Feng, C. Yang, W. Wang, Y. Sa, and Y. Feng, “Feasibility study of stain-free classification of cell 
apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques,” Apoptosis, 
vol. 23, no. 5, pp. 290–298, Jun. 2018, doi: 10.1007/s10495-018-1454-y. 

[5] A. Martini et al., “PyFitit: The software for quantitative analysis of XANES spectra using machine-learning 
algorithms,” Comput. Phys. Commun., vol. 250, p. 107064, May 2020, doi: 10.1016/j.cpc.2019.107064. 

[6] M. J. Cherukara et al., “AI-enabled high-resolution scanning coherent diffraction imaging,” Appl. Phys. Lett., vol. 
117, no. 4, p. 044103, Jul. 2020, doi: 10.1063/5.0013065. 

[7] S. Dick and M. Fernandez-Serra, “Machine learning accurate exchange and correlation functionals of the 
electronic density,” Nat. Commun., vol. 11, no. 1, p. 3509, Dec. 2020, doi: 10.1038/s41467-020-17265-7. 

[8] D. Yu, Q. Xu, H. Guo, C. Zhao, Y. Lin, and D. Li, “An efficient and lightweight convolutional neural network 
for remote sensing image scene classification,” Sensors (Switzerland), vol. 20, no. 7, p. 1999, Apr. 2020, doi: 
10.3390/s20071999. 

[9] F. Lei, X. Liu, Q. Dai, and B. W. K. Ling, “Shallow convolutional neural network for image classification,” SN 
Appl. Sci., vol. 2, no. 1, p. 97, Jan. 2020, doi: 10.1007/s42452-019-1903-4. 

[10] R. Lin, Y. Zhai, C. Xiong, and X. Li, “Inverse design of plasmonic metasurfaces by convolutional neural 
network,” Opt. Lett., vol. 45, no. 6, pp. 1362–1365, Mar. 2020, doi: 10.1364/OL.387404. 

[11] Y. Lai, Y. Ni, and S. Kokot, “Classification of raw and roasted semen cassiae samples with the use of fourier 



Technobius Physics, 2024, 2(3), 0018  

 
transform infrared fingerprints and least squares support vector machines,” Appl. Spectrosc., vol. 64, no. 6, pp. 
649–656, Jun. 2010, doi: 10.1366/000370210791414362. 

[12] Q. Zhang, H. Gu, S. Liu, J. Li, S. Tan, and J. Su, “Flow Visualization of Centrifugal Pump by the Combination 
of LIF and PIV,” Int. Conf. Sensing, Meas. Data Anal. Era Artif. Intell. ICSMD 2020 - Proc., pp. 429–432, Oct. 
2020, doi: 10.1109/ICSMD50554.2020.9261723. 

[13] A. Maqsood, C. Chen, and T. J. Jacobsson, “The Future of Material Scientists in an Age of Artificial Intelligence,” 
Adv. Sci., vol. 11, no. 19, p. 2401401, May 2024, doi: 10.1002/advs.202401401. 

[14] G. Jekateryńczuk and Z. Piotrowski, “A Survey of Sound Source Localization and Detection Methods and Their 
Applications,” Jan. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24010068. 

[15] W. Wang and K. Siau, “Artificial intelligence, machine learning, automation, robotics, future of work and future 
of humanity: A review and research agenda,” J. Database Manag., vol. 30, no. 1, pp. 61–79, Jan. 2019, doi: 
10.4018/JDM.2019010104. 

[16] M. Chui, J. Manyika, and M. Miremadi, “Where machines could replace humans-and where they can’t (yet),” 
McKinsey Q., vol. 2016, no. 3, pp. 58–69, Jan. 2016. 

[17] M. A. Salam, S. M. Al-Alawi, and A. A. Maqrashi, “Prediction of equivalent salt deposit density of contaminated 
glass plates using artificial neural networks,” J. Electrostat., vol. 66, no. 9, pp. 526–530, Sep. 2008, doi: 
10.1016/j.elstat.2008.05.003. 

[18] G. Yang, “WiLocus: CSI based human tracking system in indoor environment,” Proc. - 2016 8th Int. Conf. Meas. 
Technol. Mechatronics Autom. ICMTMA 2016, pp. 915–918, Jun. 2016, doi: 10.1109/ICMTMA.2016.219. 

[19] L. L. Zhang et al., “Bioinspired simultaneous regulation in fluorescence of AIEgen-embedded hydrogels,” Soft 
Matter, vol. 19, no. 37, pp. 7093–7099, Sep. 2023, doi: 10.1039/d3sm00845b. 

[20] Z. A. Alrowaili, A. A. El-Hamalawy, S. K. Ahmmad, S. V. S. B. Lasya, M. S. Al-Buriahi, and Y. S. Rammah, 
“A closer-look at lithium strontium boro-fluoride glasses doped with CeO2 and Yb2O3 ions: Synthesis, radiation 
shielding properties, and prediction of density using artificial intelligence techniques,” Opt. Mater. (Amst)., vol. 
135, p. 113338, Jan. 2023, doi: 10.1016/j.optmat.2022.113338. 

 
 
Information about authors: 
Muammer Kanlı – PhD, Assistant Professor, School of Applied Sciences, Beykent University, 
Istanbul, Turkey, kanlii.muammer@gmail.com  
Aikerul Ece – Master Science, Academic Associate, School of Applied Sciences, Beykent University, 
Istanbul, Turkey, aikerulece@tutamail.com  
 
Author Contributions:  
Muammer Kanlı – concept, methodology, resources, interpretation, editing. 
Aikerul Ece – data collection, testing, modeling, analysis, visualization, drafting, funding acquisition.  
 
Received: 03.09.2024  
Revised: 23.09.2024  
Accepted: 25.09.2024  
Published: 26.09.2024 
 
Conflict of Interest: The authors declare no conflict of interest. 
 
Use of Artificial Intelligence (AI): AI was used to review various application techniques in alkali 
metal halide crystals. 
 

 
Copyright: @ 2024 by the authors. Licensee Technobius, LLP, Astana, Republic of Kazakhstan. 
This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/). 

mailto:kanlii.muammer@gmail.com
mailto:aikerulece@tutamail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Technobius Physics, 2024, 2(3), 0018c, DOI: https://doi.org/10.54355/tbusphys/2.3.2024.0018c  

 

Technobius Physics 
https://technobiusphysics.kz/ 

e-ISSN 

3007-0147 

 
Corrigendum Notice: A corrigendum has been issued for this article and is 

included at the end of this document. 
  

Post-Publication Notice 
Corrigendum to “M. Kanli and A. Ece, “Artificial Intelligence in X-Ray 

imaging: advances, challenges, and future directions”, tbusphys, vol. 2, no. 3, p. 
0018, Sept. 2024. doi: 10.54355/tbusphys/2.3.2024.0018” 

 
In the originally published version of this article, several sections lacked detail on 

experimental methods, equipment sources, and statistical data processing. The following corrections 
and additions have been made: 

1. Statistical Data Processing: The revised version now provides information on statistical 
methods applied to AI model validation, including regression analysis metrics (R², RMSE), principal 
component analysis (PCA) for dimensionality reduction, Gaussian mixture models, and ANOVA 
testing to evaluate the reliability of results across multiple datasets. 

2. Equipment and Materials: The updated article specifies details on the experimental setup, 
including equipment models such as high-resolution X-ray diffractometers (e.g., Bruker D8 
Advance), diamond anvil cells (DACs), irradiation chambers with controlled photon flux, and data 
acquisition tools (MATLAB, ImageJ, Python-based pipelines, TensorFlow models). This information 
clarifies the origin and type of materials and instruments used. 

3. Figures: Figures 5–8 have been updated to improve clarity and to better illustrate AI-
predicted deformation behaviors in NaCl, LiF, KBr, and CsI crystals. 

4. Editorial Improvements: Minor corrections were made to improve consistency, 
terminology, and methodological transparency throughout the text. 

5. Also, the reference “V. N. Erofeev and E. Hartmann, “Increased electrical conductivity in 
alkali halide crystals,” Solid State Ionics, vol. 28, no. PART, pp. 241–244, Sep. 1988.” has been 
replaced with “B. Wei et al., “Enhancing Electrical Transport Performance of Polycrystalline Tin 
Selenide by Doping Different Elements,” Phys. Status Solidi Appl. Mater. Sci., vol. 221, no. 9, May 
2024, doi: 10.1002/PSSA.202300717”.  

These amendments do not alter the overall findings, discussion, or conclusions of the article 
but enhance clarity, reproducibility, and technical precision. 
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