
Technobius Physics, 2024, 2(1), 0007, DOI: https://doi.org/10.54355/tbusphys/2.1.2024.0007  

 

Technobius Physics 
https://technobiusphysics.kz/  

e-ISSN 

3007-0147 

 

 

 

 
Article 

Comparative analysis of copper X-radiation intensity with LiF and KBr crystals 

 

Dias Sagatov* 

 
Laboratory of Energy Storage Systems, National Laboratory Astana, 53 Kabanbay ave., Astana, Kazakhstan  

*Correspondence: dias.sagatov@list.ru 

 

 
Abstract. The intensity of copper X-radiation has been scrutinized as a function of the Bragg angle, employing both LiF 

and KBr crystals. X-ray intensity spectra were recorded for Cu as a function of Bragg angle using LiF, KBr single crystals 

using a PHYWE X-Ray Expert Unit (35 kV, 1 mA) with an X-ray goniometer, Plug-in Cu X-ray tube and a 2.2 mm 

diameter aperture tube.  The scanning range was chosen to be 4°-55° for LiF and 3°-75° for KBr. The resultant spectra 

furnish a comprehensive portrayal of the variation in X-ray emission intensity relative to alterations in the Bragg angle. 

This investigation contributes to our comprehension of crystallographic phenomena and underscores the efficacy of 

diverse crystalline materials in X-ray diffraction studies. Precise determinations of the energy levels for characteristic 

copper X-ray lines have been obtained, revealing 𝐸 (𝐾β) = 8868.374 ± 30.474 eV and (𝐾α) = 8026.349 ± 31.634 eV. 

These findings accentuate the significance of X-ray spectroscopy in delineating the elemental composition and structural 

attributes of materials, while also affirming the role of theoretical predictions in elucidating experimental observations. 
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1. Introduction 

Undoubtedly, X-ray diffraction stands as the cornerstone of solid-state physics and chemistry, 

representing the most pivotal and extensively utilized technique within these fields. X-ray generation 

stemming from collisions between protons or light ions and atoms stands as a pivotal area of 

investigation for understanding inner-shell ionization mechanisms. This subject has undergone 

extensive examination from experimental and theoretical standpoints over recent decades, yielding 

significant insights. Notably, extensive collections of experimental X-ray cross-section data have 

been assembled for K and L shells ionized by protons and helium ions, enabling meticulous 

comparisons with established theoretical models [1–5]. 

When high-energy electrons collide with the metallic anode within an X-ray tube, they 

generate X-rays characterized by a continuous energy spectrum. Embedded within this continuum 

are specific X-ray lines, known as characteristic X-ray lines, which remain independent of the anode 

voltage and are unique to the composition of the anode material. These lines originate from the 

ionization of an anode atom's K shell when struck by an electron. Subsequently, the resulting vacancy 

within the shell is filled by an electron transitioning from a higher energy level. The energy liberated 

during this de-excitation process manifests as an X-ray emission distinct to the anode atom.  

X-ray spectroscopy serves as a pivotal tool in the realm of material characterization, offering 

unparalleled insights into the elemental composition and structural properties of diverse substances. 

The analysis of X-ray emission intensity as a function of the Bragg angle, facilitated by crystals such 

as LiF and KBr, constitutes a fundamental aspect of X-ray diffraction studies [6–8]. This investigation 

aims to elucidate the intricate relationship between Bragg angle variations and copper X-radiation 

intensity, thereby advancing our understanding of crystallographic phenomena. Additionally, precise 

determinations of energy levels for characteristic copper X-ray lines further underscore the utility of 

X-ray spectroscopy in unraveling the intricacies of material properties. By combining experimental 
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observations with theoretical predictions, this study endeavors to provide a comprehensive 

framework for interpreting X-ray diffraction data and exploring the structural characteristics of 

materials at the atomic level [9-10].  

The aim of this article is to explore and elucidate the phenomenon of X-ray production 

resulting from collisions between protons or other light ions and atoms. By examining this process 

from both experimental and theoretical perspectives, the article seeks to enhance our understanding 

of inner-shell ionization mechanisms. Additionally, it aims to provide detailed comparisons between 

experimental X-ray cross-section data and existing theoretical models, thereby advancing the current 

understanding of X-ray generation in such collisions. 

 
2. Methods 

 

The X-ray intensity spectra have been recorded for copper as a function of Bragg angle using 

mounted LiF, KBr single crystals.  X-ray spectra were recorded using a PHYWE X-Ray Expert Unit 

(35 kV, 1mA) with X-ray goniometer, X-ray Plug-in Cu tube and Diaphragm tube with the diameter 

of 2.2 mm (Figure 1). An X-ray tube with a copper anode generates X-radiation that is selected with 

the aid of a mounted crystal (LiF and KBr) as a function of the Bragg angle. A Geiger-Muller counter 

tube with the size of 15 mm measures the intensity of the radiation. The glancing angles of the 

characteristic X-ray lines are then used to determine the energy. The spectra were scanned in the 

range 4°-55° for LiF and 3°-75° for KBr with the gate time of 2 s and angle step width 0.1° using a 

XR 4.0 Software. The goniometer has been programmed for automatic calibration to obtain accurate 

reflection angles. 

 

 
Figure 1 – Installation of X-ray goniometer and Geiger-Muller counter tube 

 

Set of mounted LiF and KBr crystals were purchased at the PHYWE Company with 

crystallographic orientation of 100. All crystals were 1 mm thick and had a usable surface area of 10 

x 12 mm. The lattice spacing was 201.4 pm for the LiF crystal and 329 pm for KBr. There are also 

differences in the treated surface of the crystals, LiF has undergone polishing while KBr has not. All 

crystals used are assumed to be pure without any impurities. 

 
3. Results and Discussion 

 

As is known, when high-energy electrons hit the metal anode of an X-ray tube, X-rays with a 

continuum energy distribution are produced. We have analyzed polychromatic X-rays using LiF and 

KBr crystals (Figure 2–3).  
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Figure 2 presents copper X-ray intensity specrtra recorded in range of 4°-55° for LiF crystals. 

The curve has a distinct peaks overlaying the continuous spectrum of the bremsstrahlung. The 

positions of these peaks remain consistent regardless of fluctuations in the anode voltage, suggesting 

their characteristic nature as copper lines. The initial set of lines corresponds to the first order of 

diffraction (n = 1), whereas the subsequent set corresponds to n = 2. This arises from the condition 

where X-rays of wavelength λ approach the crystal at an angle v, leading to constructive interference 

post-scattering only when the path difference δ between the partial waves reflected from the lattice 

planes equals one or more wavelengths. 

 

 
Figure 2 – Copper X-ray intensity as a function of the angle of incidence with LiF crystal as a 

Bragg analyzer 

 

 
Figure 3 – Copper X-ray intensity as a function of the angle of incidence with KBr crystal as a 

Bragg analyzer 

 

Substituting the LiF crystal with a KBr crystal in the examination of the copper X-ray 

spectrum permits Bragg scatterings up to the fourth order of diffraction (n = 4) as illustrated in Figure 

3. The supplementary patterns observed beyond those depicted in Figure 3 stem from the increased 
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lattice constant of the KBr crystal. The maximums recorded during X-ray irradiation in range of 3°-

75° also refer to characteristic copper peaks.  

The bremsstrahlung spectrum depicted in Figure 3 exhibits a significant decrease in intensity 

towards smaller angles, notably at 8.0° and 16.3°. This decline aligns precisely with the theoretically 

anticipated bromide K absorption edge (EK = 13.474 keV) within the first and second orders of 

diffraction. However, the potassium, lithium, and fluorine K absorption edges remain undetectable 

due to the bremsstrahlung spectrum's insufficient intensity within these energy ranges. 

In pursuit of discerning the energy values associated with the characteristic X-ray emission of 

copper, and subsequently conducting a comparative analysis with those determined through the 

corresponding energy level diagram, our approach involved the utilization of the dataset delineated 

in Table 1. 

 

Table 1 – Obtained experimental data of alkali halide crystals 

Crystals Initiation, deg Maximum, deg Shift, deg Height, no/s Area, no/s2 

LiF 

19.8 20.5 20.8 3220.0 1022.0 

22.1 22.8 23.2 9355.1 3123.4 

43.7 44.0 44.1 405.11 102.5 

49.7 50.2 50.5 1624.2 567.8 

KBr 

8.0 12.4 12.8 2110.3 1302.1 

13.2 13.3 14.2 7043.4 2209.2 

24.9 25.2 25.2 468.12 141.25 

27.2 28.1 28.4 1798.3 554.62 

39.3 39.5 39.3 128.21 39.83 

44.1 44.7 45.1 419.01 149.14 

68.6 69.2 69.2 235.31 71.23 

 

Table 2 – The calculated energy values pertaining to the characteristic copper X-ray lines 

Crystals Level ʋ/o, deg Line Eexp, keV 

LiF 

n = 1 
20.3 𝐾𝛽 8831.201 

22.6 𝐾𝛼 7975.936 

n = 2 
43.8 𝐾𝛽 8877.862 

50.2 𝐾𝛼 8024.243 

KBr 

n = 1 
12.2 𝐾𝛽 8844.761 

13.7 𝐾𝛼 8013.031 

n = 2 
25.2 𝐾𝛽 8883.512 

28.1 𝐾𝛼 8025.795 

n = 3 
39.5 𝐾𝛽 8904.498 

44.7 𝐾𝛼 8051.154 

n = 4 
 𝐾𝛽  

69.3 𝐾𝛼 8067.587 

 
4. Conclusions 

 

The intensity of copper X-radiation has been analyzed as a function of the Bragg angle, 

utilizing both LiF and KBr crystals. The observed spectra offer a comprehensive depiction of how 

the intensity of X-ray emissions varies with changes in the Bragg angle, thereby contributing to our 

understanding of crystallographic phenomena and the utility of different crystalline materials in X-

ray diffraction studies. 

Furthermore, the calculated energy values for the characteristic copper X-ray lines yield 𝐸 

(𝐾β) = 8868.374 ± 30.474 eV and (𝐾α) = 8026.349 ± 31.634 eV, providing precise determinations 
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for these energy levels. These findings underscore the utility of X-ray spectroscopy in elucidating the 

elemental composition and structural characteristics of materials, while also highlighting the efficacy 

of theoretical predictions in interpreting experimental observations. 
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