Harnessing ultrawideband technology for enhanced communication and radar detection

Adil Karimov*

School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay ave., Astana, Kazakhstan

*Correspondence: succcessfull_ak@list.ru

Abstract. This article explores the field of pulse dynamics in functional materials with an emphasis on their use in ultrawideband technology and its significance in high-frequency situations. For thirty years, a great deal of attention in the scientific and technical literature has focused on the production of high-power Gaussian pulses, which are necessary to improve radar detection capabilities. Most notably, using avalanche transistors in conjunction with Step Recovery Diodes has been shown to be an effective way to build pulse generators that support narrow pulse widths. Also describes the complex transistor-based circuitry used to generate pulses, which is based on the avalanche mode principle and requires careful pulse shaping. The balun device is a key component of this technology since it optimizes signal integrity by converting asymmetrical pulses into balanced ones. Step Recovery Diodes are also essential for fine-tuning pulse edges, which guarantees accurate temporal properties that improve communication efficiency. This article offers insights into the transformational potential of UWB technology by offering a thorough review of the technology, including prospective applications and regulatory implications. UWB technology is ready to completely transform the field, from making old communication paradigms obsolete to bringing in a new era of unheard-of communication capabilities. All things considered, this work advances our understanding of UWB technology and pulse dynamics in a sophisticated way, making it an invaluable tool for engineers, researchers, and legislators.

Keywords: pulse dynamics, ultrawideband, Step Recovery Diodes, avalanche transistors, pulse shaping, high-frequency environments.

1. Introduction

For the purpose of building machinery and devices that function in high-frequency environments, it is crucial to understand pulse dynamics in functional materials. Over the past 30 years, there has been an active discussion in the scientific and technical literature about the technology of so-called ultrawideband (UltraWideBand – UWB) pulses [1-2].

It is expected that the generated high-power Gaussian pulse will have a high-resolution range with a pulse width of hundreds of picoseconds but remain at a high pulse amplitude, which is necessary for greater radar detection [3-4].

When compared to other current methods, the use of Step Recovery Diodes (SRDs) in the generation of Gaussian pulses is an efficient way to build and construct pulse generators [5]. Avalanche transistors can be used with SRD – based circuits, narrow bandwidth, and a high amplitude signal, despite their unsuitability for high pulse repetition frequency (PRF) and narrow pulse widths [6]. SRD – based pulse generators are perfectly suitable for generating a narrow pulse width on the order of 100 picoseconds.

Transistor-based circuit includes the avalanche transistor, a biasing voltage supply, an input trigger, and various resistors and capacitors. The main principle of working this part of the circuit is
based on avalanche mode. A high voltage from the DC voltage supply is fed to a collector while the input trigger excites the base of the transistor [7-8].

Since SRDs cannot tolerate high voltage, a differentiator is needed. The balun divides high amplitude pulses with a negative polarity from the avalanche-based circuit, followed by two parallel SRD pulse shaping circuits. The purpose of the balun is to transform the asymmetrical pulses into balanced ones [9-10].

UWB will therefore either herald the demise of outdated technology or usher in a new era of communication, and both are likely to endure. An overview of UWB technology, so it is possible uses, and the standard for global UWB regulation are provided by our research. Additionally included are the brief impulse and benefits/disadvantages of UWB [11-15].

2. Methods

The avalanche-based circuit consists of two main parts, namely, the driven circuit part with the avalanche transistor, and the second part that of pulse-shaping networks. The second part itself comprises of a balun device and two branches of pulse-shape shaping circuits with step recovery diodes (SRD).

Transistor-based circuit includes the avalanche transistor, a biasing voltage supply, input trigger and various resistors and capacitors. The main principle of working of this part of circuit is based on avalanche mode. A high voltage from DC voltage supply is fed to collector, while input trigger excites base of the transistor.

Since SRDs cannot tolerate high voltage, the differentiator is needed. The balun is used to divide high amplitude pulses with a negative polarity which come from the avalanche-based circuit, goes by 2 parallel SRD pulse shaping circuits. The main goal of the balun is transforming the asymmetrical pulses into balanced ones.

The primary reason of using of SRDs s is to hone the cutting edge and falling edge of the balun output signal. A total of four SRDs are used in the circuit with one in series followed by consecutive one in parallel, and same in another branch, which are responsible for sharpening the leading and falling edges, respectively. The sharpened pulses are then fed to a combiner and then to a balanced antenna.

3. Results and Discussion

In a design of the avalanche-based circuit, a silicon (Si) bipolar transistor is needed, which plays a role as an ultrafast switch (Figure 1). The main characteristics of the avalanche transistor 2N4014 presented in Table 1. The circuit was fabricated consisting of a transistor, capacitors (C_{CC}, C_B), resistors (R_{CC}, R_{BE}, R_L), a voltage supply (Vcc), and waveform generator which is used for a creating a trigger pulse that is connected to the Base (B) of the transistor.

![Figure 1 – The circuit schematic of the avalanche transistor 2N4014](image)
Table 1 – The main characteristics of the avalanche transistor 2N4014

<table>
<thead>
<tr>
<th>Notation</th>
<th>Model/Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&lt;sub&gt;BE&lt;/sub&gt;</td>
<td>50</td>
<td>Ω</td>
</tr>
<tr>
<td>R&lt;sub&gt;CC&lt;/sub&gt;</td>
<td>10</td>
<td>KΩ</td>
</tr>
<tr>
<td>R&lt;sub&gt;L&lt;/sub&gt;</td>
<td>50</td>
<td>Ω</td>
</tr>
<tr>
<td>C&lt;sub&gt;B&lt;/sub&gt;</td>
<td>1</td>
<td>nF</td>
</tr>
<tr>
<td>C&lt;sub&gt;CC&lt;/sub&gt;</td>
<td>39</td>
<td>pF</td>
</tr>
<tr>
<td>Q</td>
<td>2N4014</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>147</td>
<td>V</td>
</tr>
<tr>
<td>Trigger</td>
<td>1</td>
<td>MHz</td>
</tr>
</tbody>
</table>

At the beginning, to evaluate all values of the trigger pulse, VCC, C<sub>cc</sub>, and examine the output signal, nine tests were conducted on a breadboard (Figure 2).

![Figure 2](image2.jpg)

Figure 2 – Test result of the avalanche transistor circuit on a breadboard

Thus, Figure 1 and 2 presents a trade-off between the output amplitude and the output signal’s width. It seems that the narrowest output signal we can get by using a capacitor with a small capacitance, while the higher capacitance (C<sub>cc</sub>), the higher voltage of output signal, but wider a width. The next steps are changing a configuration of the circuit and getting better results on PCB.

In the Fig. 3, six resistors were connected in parallel. In fact, R<sub>CC</sub> = 10 kΩ || 10 kΩ = 5 kΩ, R<sub>BE</sub>= 100 Ω || 100 Ω = 50 Ω, R<sub>L</sub> = 92 Ω || 160 Ω = 58.4 Ω (∼50 Ω).

![Figure 3](image3.jpg)

Figure 3 – The circuit of the avalanche transistor 2N4014 on PCB

The reason why resistors were chosen to be connected in parallel was that the resistors were not high-power resistors, so to prevent them from overheating, it was better to connect 2 resistors in parallel than using 1 resistor connected in series. The capacitor C<sub>B</sub> was chosen with small capacitance (C<sub>B</sub> = 1 nF) because less AC signal can pass a capacitor with less capacitance in comparison with a
capacitor with bigger capacitance. This phenomenon happens because a capacitor can allow passing only the AC signal and blocks the DC signal, the smaller capacitance, the smaller signal can go through. The capacitor prevents the passing of the DC base current into the signal generator.

After assembling and soldering of all components of the avalanche transistor, we have got the result as follows (Fig. 5).

![Figure 5](image-url)  
Figure 5 – The plot of the output signal of the avalanche transistor circuit: a) A plot created in ADS; b) The spectrum related to output signal of the avalanche-based circuit.

A trigger signals: 500 mVpp; VCC: 147 V; C(CC) = 39 pF; output Vpp = 90.7V; Width = 3.9ns; fall Time: 2.2ns. As compared to previous tests with the same circuit but on the breadboard, we have got a better result. The output was improved in terms of the width from 6.0ns to 3.9ns. In this stage, it is apparent that it is still not our desired result, which is to get the pulse width at least 100ps. On top of that, there are ripples that need to be eliminated. The next steps to work with SRD pulse shaping circuits to decrease the width of output signal and diminish the size of ripples.

4. Conclusions

To sum up, the discussion that follows emphasizes how critical it is to comprehend pulse dynamics in functional materials, especially when high-frequency environments are involved, as demonstrated by UWB pulse technology. This talk explains the importance of producing high-power Gaussian pulses with high-resolution ranges and pulse widths on the order of hundreds of picoseconds, which can lead to improved radar detection capabilities. It does this by reviewing a large body of literature covering the last thirty years.

SRDs have been shown to be effective when used with avalanche transistors to generate Gaussian pulses. This means that building pulse generators that are suitable for small pulse widths can be done in an economical manner. Based on the avalanche mode concept, the complex transistor circuitry describes a sophisticated interaction of elements intended to achieve accurate pulse shaping.

Also explained is the necessity of the balun device for converting asymmetrical pulses into balanced ones, as well as the critical function of SRDs for refining the pulse signals' rising and falling edges. In the end, this produces sharpened pulses ready for transmission through a balanced antenna, increasing the effectiveness of communication systems that function inside UWB frameworks.

The possible consequences of UWB technology are highlighted, with repercussions spanning from the demise of outdated communication models to the dawning of a new era marked by unparalleled communication powers. Through presenting an extensive synopsis of UWB technology, its possible uses, and the associated regulatory environment, this discussion advances a sophisticated comprehension of the revolutionary possibilities present in UWB technology.

Essentially, this work summarizes a comprehensive investigation of UWB technology and pulse dynamics, providing an understanding of both the theoretical foundations and real-world
applications of these fields. Because of this, it is an invaluable tool for scholars, engineers, and decision-makers who will be influencing the future course of communication technology.

**References**


11. Novel wide bandwidth GaAs sampling MMIC using microstrip based nonlinear transmission line (NLT) and NLT shock wave generator design in Microwave Conference / D. Salameh, D. Linton // Proceedings of the 28th European Microwave Conference. — 1998. — P. 18–23. [https://doi.org/10.1109/EUMA.1998.338085](https://doi.org/10.1109/EUMA.1998.338085)


**Information about author:**

Adil Karimov – PhD Student, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay ave., Astana, Kazakhstan, successfull_ak@list.ru

**Author Contribution:**

Adil Karimov – concept, methodology, resources, data collection, testing, modeling, analysis, visualization, interpretation, drafting, editing, funding acquisition.

**Received:** 03.11.2023  
**Revised:** 28.03.2024  
**Accepted:** 29.03.2024  
**Published:** 29.03.2024